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ABSTRACT 152 9 ?

The need for data compression, a consequence of the demands
made on the telemetry system of a space vehicle, prompts consideration
of the use of sample quantiles in estimating population parameters and
obtaining tests of goodness of fit for large samples. In this paper opti-
mal unbiased estimators of the mean and standard deviation are given
using up to twenty quantiles when the population is normal. Moreover,
the estimators are relatively insensitive to deviations from normality.
A distribution-free goodness-of-fit test is presented based on the sum
of the squares of four quantiles after an orthogonal transformation to
independent normal deviates. If a frequency function is of the form
f(x;p) = pfi(x) + (1 — p)f.(x),0 < p < 1, where f, and f, are normal
frequency functions, the distribution is likely to be bimodal. Another
goodness-of-fit test is obtained using four quantiles, which is likely to
have considerable power with a null hypothesis of normality and the
alternative hypothesis of bimodality. The “data compression ratios”
obtained with the use of a quantile system can be on the order of
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100 to 1.

W T HIA

I. INTRODUCTION

This paper introduces to statisticians a new area of
application of statistics to the space program. Each deep
space probe or planetary probe represents a great ex-
penditure of effort, and as much usable information must
be obtained from each shot as possible. Arbitrarily sophis-
ticated data processing equipment is available here on
Earth; the restriction comes rather in the space communi-
cation link between the probe and Earth. Previous work
on inefficient statistics (Ref. 1-4) has centered on the
problem of simple processing of large amounts of data.
The problem in data compression is to precondition the
data aboard the spacecraft so that useful information can
be obtained from the received data. There are many
different data compression schemes under consideration
suitable for various classes of experiments; it is the
purpose of this paper to illustrate one of these methods,

showing the complexity of the compression equipment,
the savings in amount of data which has to be transmitted,
and the uses to which the received data can be put.

We shall consider, as defined in Ref. 1, certain func-
tions of order statistics called systematic statistics. First,
let us recall the definition of the pth quantile z, of a
(cumulative) distribution function F(x) for 0 < p < 1.
This z, is defined as the lower limit of all x such that
F(u) > p. For p = 15, z, is called the median; for p = 1,
the first quartile, etc.

We shall be forming z, from the cumulative sample
distribution, and any statistic based on these quantiles
(or order statistics) is called a systematic statistic by
Mosteller (Ref. 1). The point is that quantiles can be
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computed aboard a space probe very easily and then
transmitted to Earth. But let us consider what “computed
very easily” means. An on-board computer is needed
which does not use any arithmetic operations, since to do
these operations requires complex arithmetic units and
stored programs. Instead, only counters and accumulators
should be used. This is basically the same reason for
which Mosteller studied order statistics — ease of sorting
and computing quantiles with the then available punched
card equipment.

The main use envisioned at present for systematic sta-
tistics is in particle count experiments, but most space
experiments to date have been of this nature. A so-called
functional diagram of a particle counter is shown in Fig.
1. Here four quantiles are being used: 0.067, 0.291, 0.709,
0.933, corresponding to an optimal choice of four quan-
tiles given later.

The system may be described as follows: The 6-bit
input counter counts the number of incoming particles
per second. On command from a control unit (not shown),
the distributor at the end of each second puts a 1 in the
storage register indexed by the number of particles
counted. (The experiment is presumably arranged so that
counts of more than 63 in 1 sec are unlikely.) The control
unit also sets the input counter to 0 at the end of each
second. Once every 1,000 sec the control unit causes the
contents of storage registers Ro, Ry, * *, Rss to be added
sequentially into the accumulator, which has been set to
0 at the end of the previous quantile computation; after
being loaded into the accumulator, the registers are set

to 0, to await the next thousand-second cycle. After the
contents of each R; are added into the accumulator, each
of the four comparators compares the number in the
accumulator with, for example, 67, 291, 709, 933 = q,, q.,
gs, q., respectively. If the sum in the accumulator is less
than ¢, the accumulator keeps accumulating. As soon as
the accumulator sum is at least g,, the number in the
comparator, C,, which also equals the number in the
accumulator, is transferred with erasure via the transfer
to the proper quantile register, which is in addition non-
destructively loaded via the transfer with the index of
the register counter last emptied into the accumulator.
The register counter then adds the next R;’s into the
accumulator until the first time that g, is equalled or
exceeded. The quantile computation is completed when
the fourth quantile has been computed, although the
accumulator is still being loaded for the remaining num-
ber of seconds until the thousandth. (The extra informa-
tion as to what fraction the jth quantile actually was is
useful; thus one may want to know that the first time the
number in the accumulator exceeded 67 it was actually
81.) The control unit then empties the four quantile reg-
isters into the telemetry channel and gives the pulse at
second 1,001 which empties the input counter into the
distributor for the start of the next run of 1,000; this as-
sumes that that quantile computation described above
takes place in less than 1 sec, a reasonable assumption.

This computing equipment is much simpler than an
arithmetic unit which computes, for example, means and
variances. Furthermore, the assumptions discussed below
necessary to compute (on Earth) the mean and variance

TELEMETRY
REGISTER
COUNTER TRANSFER
‘ A
Y
Fo ¢ 67 b o QO |->e
R, Cp: 291 b ¢ @
S e e ceeo |t 1 o
INPUT o~——s» INPUT {—® DISTRIBUTOR [F——————— ——- ACCUMULATOR
COUNTER >~ R; }-—— C3:709 o—E}—u»
~
~
\\————&
Rea C4:933 | L"}
STORAGE COMPARATORS (4) QUANTILE
REGISTERS (64) REGISTERS (4)

Fig. 1. Data compression system using quantiles
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from these quantiles are not sensitive to departures from
normality (or actually from the Poisson distribution). The
data compression ratio, that is, the ratio of transmitted
bits, or zeros and ones in a “raw data” system, to the
number of bits necessary in this quantile system, may be
computed as follows. (Of course, there still remains the
question of what can be done with the received quan-
tiles.) The 4 quantiles take 6 bits each, since each quan-
tile is an integer between 0 and 63 = 2¢ — 1. The excess
of the number actually in the accumulator when the
quantile was equalled or exceeded and the value of each

g; will take not more than, say, 6 bits, which assumes in
effect that no R; has more than 63 in it, that is, that no
number of counts per sec occurs more than 63 times in
1000 sec. The total number of bits required every 1000
secis (6 + 6) X 4 = 48, since there are 4 quantiles. The
raw data system with 6-bit words would take 1000 X 6
= 6000 bits every 1000 sec. The data compression ratio
is thus 6000/48 = 125. But it must be seen how useful
the resulting compressed data is. First the use of quan-
tiles for estimation will be considered; then an applica-
tion will be given to tests of hypotheses.

Il. UNBIASED ESTIMATES OF THE MEAN, 1, AND THE STANDARD
DEVIATION, o, OF A NORMAL POPULATION

Consider a sample of n values, where n is, say, greater
than 200, drawn from an (approximately) normal popu-
lation with a continuous cumulative distribution func-
tion F(x) and probability density function f(x) = F’ (x).
Following Cramér (Ref. 5), let £, denote the pth quantile
or, alternatively, the quantile of order p of the distribu-
tion F,i.e., F({,) = p, and let z, denote the corresponding
quantile of the sample cumulative distribution.

Cramér shows that the joint distribution and the mar-
ginal distributions of two (and indeed of any number of)
sample quantiles z, and z, are asymptotically normal

1 2

as n = oo. The means of the limiting distributions are
the corresponding quantiles Z,, and ¢ " of the population

and the asymptotic second central moments and correla-
tion are given by

o? = P1qs
1 "fi
o? =P2Qz
T

_ ( pl q2 )1/2
P12 _Pz q—1

where fm = f(&m), pr < pzandg; =1 —p;, i = 1,2.

Asymptotically unbiased estimators of p and o will be
constructed from linear combinations of k quantiles, for
k = 12346810 -+ 20, suitably chosen to minimize
the asymptotic variance of the estimates. With no loss
in generality it may be assumed that the underlying
normal population has zero mean and unit variance. It
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is useful to define a measure of the efficiency of esti-
mates obtained from quantiles. Since the sample mean

is an efficient statistic for estimating p, and

n 1/2
- 1 - X
(2 o)

is an asymptotically unbiased statistic for estimating o,
comparison will be made with these statistics. Thus if
7 and % are estimates of s and o obtained from quantiles,
the efficiencies of & and @ are defined as

0.2
eff(i) = P

o* (k)
o) = 5 :2 ®

To apply the results obtained here to statistical experi-
ments performed aboard a space probe, the order of the
quantiles must be specified in advance; the same set of
quantiles must be used in estimating both p and o as well
as in the goodness-of-fit tests to be subsequently de-
scribed. Nevertheless, in the interest of greater general-
ity, optimal estimators for x and ¢ will be constructed
independently. In addition, suboptimum sets of quantiles
will be given, resulting from minimizing the linear com-
bination o%(2) + bo*(%) for b = 1,2 when k = 4 and for
b = 12,3 when k > 4. Estimators for u and o will be
constructed in each case, both using the same set of
quantiles.

The estimation of the mean and standard deviation of
a normal distribution from quantiles has been considered
previously by others, among whom are K. Pearson (Ref.
6), F. Benson (Ref. 4), H. P. Stout and F. Stern (Ref. 3),
and, notably, by F. Mosteller (Ref. 1) and J. Ogawa (Ref.
2, pp. 47-55, 272-283). Mosteller gives estimators for the
mean using one, two and three quantiles and estimators
for the standard deviation using two, four and eight
quantiles. The present method of constructing the esti-
mators departs from his essentially in that weighted
rather than simple averages are taken when the number
of quantiles exceeds two, resulting in greater efficiencies.
Ogawa (pp. 47-55) defined the relative efficiency of his
estimators as the ratio of the amount of information in
Fisher’s sense derived from the joint distribution of the

sample quantiles to that derived from the original whole
sample. In the case of a normal population, this defini-
tion agrees exactly with the definition of efficiency given
here for both the mean and standard deviation. By apply-
ing the (Gauss-Markoff) theorem of least squares, Ogawa
derived the best linear unbiased estimators for a fixed set
of k quantiles, and, by maximizing the relative efficien-
cies of the estimators, he determined the optimal spacing
to be used in choosing the quantiles. The present method
of arriving at the optimum spacing consists of determin-
ing the set of quantiles which minimizes the variance of
the estimate. Although the method given here for finding
the best linear unbiased estimators differs from Ogawa’s,
both result in estimators “efficient” with respect to rela-
tive efficiency, so that his estimators and those given here
agree. The method given here is more amenable to numeri-
cal calculation and is somewhat differently motivated.

Since estimates from one and two quantiles bear re-
peating, we begin the discussion with one quantile. The
mean (but not the standard) deviation can be estimated
from a single quantile. In this case, as is well known, one
chooses the median of the sample, the quantile of order

0.5, for the estimator @ = z,s. The estimate is unbiased
with

052 _ 1571

o*(p) = RFO) - n

so that
Eff (7) = 0.637

To obtain an estimate of ¢ as well as one for p, at least
two quantiles are needed. Hence, denoting by z, and z,
the sample quantiles of order p, and p, such that
pr < p. = 1 — p,, the following maximum likelihood
estimators are obtained (assuming z, and z, jointly
normal):

4= 22 21 22 21
éz - Cl 2C2
2 N — 1 2 2 —_
ot (k) = wy (0'1 + 0 + 20, 02 p12) =
2p, (1 = p,) + 2p: (1 — p1) . P _ P
inf: nfi  I-p o onf
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p(l— 2p,)

2 () — __1 2 2
o2 (o) = i (62 +062 —20105p12) = onl: f2
1 /1

Minimizing the two variances independently results in
minimum-variance unbiased estimators:

S
2

A-—
n=

(z1 + z,)

where z, and z, are of orders
p, = 02709
p: = 0.7201
G = 0.337 (Z2 - zl)
where 2, and z, are of orders
p, = 0.0694
p. = 0.9306
The efficiencies are
eff (z) = 0.810
eff (¢) = 0.652
To obtain estimates from more than two quantiles, one
may use the results derived from considering the follow-
ing more general problem.
Suppose one has s unbiased estimates, x,, x, ** - x, of
a population parameter a such that the x; are normally
distributed with variances ¢? and correlations p;;, and

one wishes to obtain a new unbiased estimate
@(x;, %2 ** * x,) of a as a linear combination of the x;, say

s

A 2 :

a = Ci X;
i=1

Z ci=1

i=1
determining the c; so that the variance of « is minimized.

Employing maximum-likelihood estimation theory, one
forms the likelihood function L(x, *++ x,;a), the joint

= 0 and solves for .

density function of the x;, sets ZL
4 4

This provides the estimate @ with the required minimum
variance. Accordingly, one has

1
(277)‘/2 O145550s \/Z

exp[— D IP N (xi—a>(x,-—a)]

2
i=1 j=1

L(x1 LI x‘;a) =

where A denotes the determinant of the correlation ma-
trix (pii)a and

b;
(Bes) Aj) = (pi;)™*
bi; = by

olnL _ 1 z‘ zs _ b;;
e A (i = a) o; 0§
j=1

i=1

V=

Solving V = 0 for & gives for the solution a:

] & bi
(1)

8 8
o; 0j
i=1 i=1

A __ =1
« =

The variance of @ can be obtained directly by observ-
ing that the Cramér-Rao inequality for an unbiased
estimate,

1
E(V?)

2\
vara =

becomes an equality when the correlation between V
and a is =+ 1, since (Ref. 7)

E(V)=0,cov(V,a) =1
so that when the correlation is =1,

N
a

[cov (V,a)]? - 1 1
varV varV E(V?)

var
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Since V is a linear function of @, namely

s 5
)P I
o; 0j 8 3
V= =1 j=1 P Q—' a E Z b;]
A A o Oj
j=1

i=1 =

the condition on the correlation between V and @ is sat-
isfied. Hence var @ is given by

vara = (E(Vz))'1 = - [E( v, ]

3 g )
D D -

i=1

A
s
1=1

From this it can be seen that @ as a linear unbiased
estimator is an “efficient estimator,”

An estimator for x may now be constructed (by reduc-
tion to the case of two estimates) from three quantiles by
letting %, = z, and %, = 15 (z: + 2;) in Eq. (1), where
2z, is of order 0.5 and 2, and z; are of orders p, and p;

= 1 — p, > p,. For this case, after some calculation, one
has

2 1

— 2
1 4n fz ’ 2

P1 _
~2n—f'; s Py 2z, = V2p1
1

4z, (0:f2 — pofef) H (2 + 25) (F2— 2pifo Fr)
2 (ﬁ +2P1f§ —4p. f. f)

N =
=

5 A P (1 — 2P1)
o (1) = 5, (f2 + 2p.f2 — 4p. . )

The unbiased estimator with minimum variances is given
by

/,l: = 0.416 X2 + 0.292 (Z1 + 23)

where z,, 2, and z; are of orders p, = 0.1587, p, = 0.5,
ps = 0.8413

eff () = 0.882

Only p, + p; = 1 (symmetric quantiles) were considered,
since for maximum efficiency this is the case (Ref. 2).

Estimates for both x and o can be obtained for even

k = 4 by the same procedure. For the mean, using four
quantiles, let

1
= o (z: + z4)

1
X = ‘E(zz + z;)

where z; is of order pi; i = 1, 2, 3, 4, and p, + p,
=P2+Ps=1,0<p1<P2<p3<p4<1.Then

: _ _P
G2y ™ 2n1f2
1
o = P2
f2 - 2nf?
Pzy 23 = '_::':—

From Eq. (1), one has

(2o + 2) (P2 f2 = Prhifo) + (2 + 25) (D1 f2 = 0 fu f2)
2 (pof2 +p.f2 —2p.fif2)

A——
n=

P1p: — P}
2n (p.f; + p:f; — 2p: fif2)

o* () =

To estimate o, from four quantiles, one must use as
found

T4 = 2y
2Z,

xX; =

Zs_Z2

=

2 _ pl(l—zpl)
%51 T Ton gz f2

v = p2 (1 — 2p.)
o2 2n ¢z f2

= P1 (1 - 2P2
Pra 2 p. (1= 2p,)
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Then

4

2 e - m - 2t + 2GEE) [0 - g2 fr — (- 200 B

Q)

and

(1= 2p)85f, + (1= 2p,) 8311 — 2. (1 — 2p2) L Lafofe

s (1 = 2p,) [p. (1 — 2ps) — ps (1 — 2p,)]

"= e A=) G3f2 + 1 (A= 2 812 — 29 (L~ 20D o)

By varying p, and p, using a digital computer the un-
biased minimum variance estimators of p and ¢ were
found to be:

©=10.198 (z, + z,) + 0302 (z, + 23)

where 2., 2,, Zs, %, are of orders p, = 0.1088, p, = 0.3512,
ps = 0.6488, p, = 0.8932, respectively,

and
/0'\ = 0.116 (z; - Z1) + 0-236 (23 - Z2)

where z,, z,, 25, Z, are of orders p, = 0.0230, p, = 0.1271,
ps = 0.8729, p, = 09770

eff (&) = 0.920
off () = 0.824

Tables 1 and 2 summarize the results obtained for
6 < k = 20. Since it is assumed that both x and o are
unknown, estimators of o are given for an even number
of quantiles only. Although some of the expressions given
by Ogawa (Ref. 2, p. 279) as optimum estimates of u are
slightly biased, there is no significant difference between
his estimators and those given in Table 1. (However, the
coefficient of his estimator of ¢ (Ref. 2, p. 282) using two
quantiles is too large by a factor of two.) We have been
so far unable to prove that the optimum estimates for ¢
use symmetric quantiles, but only these have been con-
sidered in the tables. Symmetric quantiles have the fur-
ther advantage of being less sensitive to departures from
normality which result in skew distributions, skewed
away from the location of nonsymmetric quantiles.

The minimization of the sum of variances ¢*(2) + ¢%(5)
for k = 4 results in the following estimators, both using
the same quantiles; the details are omitted:

2 = 0141 (z, +z,) + 0.359 (z, + z,)
e = 0.258 (z, — z,) + 0.205 (z; — z2)

where z,, 2, Zs, 2, are of orders p, = 0.0668, p. = 0.2912,
ps = 0.7088, p, = 0.9332,

off () = 0.908
off (5) = 0.735
Minimizing the linear combination o*(z) + 20¢%(5) for

k = 4 results in the following estimators, both using the
same quantiles

7 =0.093 (z, + z,) + 0.408 (z; + zs)

,0'\ = 0.171 (Z§ - zl) + 0.237 (23 - Z2)

where z,, 2,, 25, Z, are of orders p, = 0.036, p. = 0212,
ps = 0.788, p, = 0.964,

eff () = 0.854
eff (¢) = 0.796

Tables 3-8 give the results for 6 =< k =< 20 and
b=123.

The decision to minimize the linear combination
o?(2) + bo*(%) in order to obtain suboptimum sets of
quantiles to be used in estimating both x and o, is admit-
tedly an arbitrary one. For b = 1 the efficiency of £ is
scarcely affected when compared to that obtained using
the optimal set of quantiles for % only, while the effi-
ciency of @, although considerably improved for small
values of k over what can be achieved using fewer quan-
tiles, suffers a greater loss than does the efficiency of %
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with this particular compromise. If the variation of 7 is
the important consideration, increasing the value of b
gives different suboptimal sets of quantiles for which the
efficiency of @ is improved. (Ogawa maximizes the gain
in Fisher’s information; it is hard to relate this to an
equivalent choice of b.)

For increasing values of k, the two optimum extreme
quantile values, those of orders p, and p;, move farther
out on the tails of the distribution. Fig. 2 exhibits the
monotone decreasing property of the optimum values of
p1. Although from a theoretical viewpoint this fact is of
little consequence, from practical considerations there are
two major objections to this behavior of p, and p;. First,
since n is never infinite, the true distributions of the
sample quantiles are only approximately normal and,
more importantly, the deviation from normality becomes
more pronounced the farther the quantiles move out on
the tails of the distribution. Second, the “normal” distri-
butions that one encounters in practical situations are
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Fig. 2. Optimum values of p, for estimators 1. and G
obtained by minimizing (1) and ¢%(5)

very often only approximately normal with deviations
from normality greater out on the tails than toward the
center of the distribution. It is thus important on both
counts to investigate the effect on the efficiency of the
estimators when optimum and suboptimum estimates of
r and ¢ are obtained when p, is restricted to be not less
than some specified value. If the loss in efficiency is not
excessive it may well prove advantageous to adopt the
cautious policy of restricting the value of p, and thus
avoid or limit a bias in the estimates of u and o due
either to a sufficiently large deviation from the assumed
normality of the distribution of the extreme quantiles or
to the erratic behavior out on the tail of an approximately
normal parent distribution. Tables 9-16 give optimum
and suboptimum estimators of x and ¢ when p, is re-
stricted to be not less than 0.01. Tables 17-24 give similar
results for p, not less than 0.025. For comparison pur-
poses, Tables 25-27 list the efficiencies of the estimators
for 6 = k = 20, k even, under the various conditions and
restrictions. It is readily seen from these tables that
although the restrictions on p, affect the efficiencies of &
to a greater extent than those of %, nevertheless effi-
ciencies greater than 0.90 can be achieved for subopti-
mum estimators of ¢ for k = 10 when p, is restricted to
be not less than 0.025. In fact, for this case very little is
gained by using more than 10 quantiles!

If the population is distributed with mean p and vari-
ance ¢° (instead of being the unit normal), all the optimal
quantiles and estimators given above for x and ¢ are the
same, as is necessary if the system is to be used for un-
known g, ¢. This is obvious in the case of %; it follows in
the case of ¢ from the following observation. In general,
using two quantiles,

AN BT %

where z, and z; are of orders p, and p. = 1 — p, > py;
the corresponding population quantiles are ¢, and ¢,
while  ;, is the corresponding quantile of the unit normal
distribution. One then sees that

~_ 2l _ ol,+p—ol; —n _
E(G)— 2{. - 2€Q =0c

2 2

since ] = — ¢} .
This proves the assertion, and shows that the system can
actually be used with the calculated quantiles and effi-
ciencies as above.
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. A GOODNESS-OF-FIT TEST

A test which decides on the basis of criteria fixed
beforehand whether or not it is reasonable to regard a
set of n observed values of a random variable as coming
from a population with a specified probability distribu-
tion is said to be a goodness-of-fit test. A number of tests
of this nature exist at present when all of the sample
values are available. But when data must be transmitted
from a space probe to Earth and a high data-compression
ratio is desired, a goodness-of-fit test which can be ap-
plied to a small amount of received data is highly advan-
tageous. Such a test, based on only four sample quantiles
(and a large value of n), is presented below. Moreover,
subject to the condition that the density function of the
hypothesized distribution possesses a continuous deriva-
tive in some neighborhood of each quantile value (Ref. 5),
the test is (asymptotically) distribution free.

Let H, denote the null hypothesis that the parent
population has a probability distribution with density
function f(x) (which meets the above condition on its
derivative), and let H, denote the (composite) alternative
hypothesis that the density function is not f(x). Let £,, 2,
¢s, & be four quantiles of orders p,, p,, ps, ps, and let
21, %3, Z3, Z4 denote the corresponding sample quantiles.
A criterion on the basis of which one may accept or reject
H, will be established as a function of the sample quan-
tiles z;, so that the probability of an error of the first kind
will be equal to a given e, the significance level of the
test. (Then the p; could be chosen to minimize the proba-
bility of an error of the second kind under various simple
alternatives.) The analysis will be based as in Section II,
on the limiting distributions and moments of the z;.

Since the random variables z,, z., zs, z, are not inde-
pendent, it is convenient to transform them into four
new random variables, x,, x,, %;, 2., under the following
triangular transformation, by the Gram-Schmidt orthogo-

nalization procedure familiar from the theory of orthogo-
nal spaces.

So let

1

(13}

X =

(zl - Cl)

1
X = (1 - P122 )z [—"' (zz - &) - P12z xl]
o2

1= By [(1 - P122) vz (za - ;3)

- (Pza - P12 P13) X2 — P13 (1 - Plzz)l/2 xl]

1
Xy T [— (z4 - C;) = Bsx; — B2X: — pua xl]
Oy

where o2 is the variance of z; and p;; the correlation
between z; and z; under H,.

Here
Bi= (1= pf = pl = i t 2p12 prs p2s)
0

B2 = {p2u — pr2 Pu)

Bs = B [(Pu = pupu) (1 —p3 )2

{1 — .2 \-1/2
(L= p2 )

= (1 — p2 )% (pzs — paz prs) (p2e = p12 p14)]
a=(1- B: - B - 9124)_1/2

It is not difficult to verify that, under the null hypoth-
esis, the x;, i = 1,2, 3, 4 are normally distributed random
variables, each with zero mean and unit variance, and
independent. Thus the likelihood function is the density
function of the joint distribution of the x;, given by

4

1 1
L(x, %2, %5, %) = Gy ( Y Zx ?)

i=1

which has a maximum value of (2x)2 A critical or re-
jection region can now be designated as the interval
0 < L < A, A < (2n)2, where A is determined such that,
given H,, the probability of L(x1, %z, %3, x.) lying in this
interval is equal to . However, since L(x,, X, %3, x,)isa

4
monotone function of y = 3 x%, and y = 0 when

=1
L = (2r)%, y—> o when L —1> 0, a critical region of the
form 0 < L < A is equivalent to a critical region y > B,
where B is determined so that the probability of y > B
equals . Now, y has the chi-square distribution with
four degrees of freedom, so that its density function K(y)
is given by
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ko) = L yow

y=0

Hence, B is the solution to the equation

f Ky)dy=1—¢

For ¢ = 005, B = 9.5; and for ¢ = 001, B = 13.3.

To test H,, therefore, transform the observed values of
z; (of order p;) i = 1,2, 3, 4, to the x; by means of the
4

above transformation; if 3 x2 < B, accept H,. If

i=1
24 x? > B, reject H,. The decision will be made on a
=1
significance level of e.

In practical situations, the null hypothesis is often
made on the form of the density function which may be
a function of several unknown parameters. For example,
one may wish to test the hypothesis that the parent
population is normally distributed with unknown mean
and variance. In order to carry out this non-studentized
test, estimates of the mean p and variance o? of the
population are required. For this purpose the estimators
obtained previously by minimizing ¢*(i) + ¢%©) may
be used:

2= 0141 (z, + z,) + 0.359 (2, + z5)

Q>

0.258 (Z4 - Zl) + 0.205 (z;; el zZ)
where
p. = 0.0668, p, = 0.2912, p;= 0.7088, p, = 0.9332

Although the estimators are derived on the basis of a
normally distributed parent population, they are rela-
tively insensitive to deviations from normality. Replacing
pand ¢ by 7 and @, ¢; and f(Z;) can be determined, where
each {; is of the same order as the corresponding z; used
in the estimators of u and o. Thus to test the hypothesis
that a set of n sample values has been taken from a nor-
mally distributed population with unknown mean and
variance, using four quantiles, the above estimators can
be used. The transformation to independent variables for
this special case then becomes

10

Z1 = pa)

0.519./n
X = _—3—\/_: (

Xy, = 0-830\/_::— (Zl - [1.2) - 0.459 X1

X = 0.827“/%_ (25 — us) — 0410, — 0.187 ,

X, = 0.571‘/—2— (2. = pa) — 0.418 x, — 0.170x, — 0079z,

where

The above test was applied to two sets of samples, each
taken from non-normally distributed populations in order
to test for normality. In case A, the parent population was
bimodal with a density function given by

0.2 e—'-‘;—z + 08 -1/2 (%)2

x) = e

fa(x) = =

500 sample values were generated from entries taken
from a table of random numbers. The optimal set of four
sample quantiles for the joint estimation of x and ¢ was
determined and used to obtain the results %0 = 7.19,
@ = 4.35, as compared to x = 7.2, ¢ = 4.51. After the
transformation to independent variables under the null
hypothesis that the population was normally distributed,

4
the result 3 x? = 39.0 was obtained! Since this means
i=1
that it is highly improbable that H, is true, the result is
quite satisfactory.

With respect to case B, the parent population was also
bimodal with a density function given by

0.3
Vv an

o+ 0L e ()

32 °

250 were: %@ = 2.69,
= 315 and

fs(x) =

The results in this case with n
A

¢ = 3.09 as compared to p = 28, o
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é x? = 22.5. Thus, for this case H, would also be re-

f;éted at significance levels of 0.05 and 0.01. The null
hypothesis that the second set of samples came from a
population with the true density function fz(x) was then

tested. For this case, }4} x? = 123, so that the hypothesis
i=1
would be accepted.

The power of the test, that is, the probability of reject-
ing H, when it is false, obviously depends on the nature
of the true distribution of the population (as well as on
the significance level). In order to determine the power
of the test relative to a specific alternate density func-
tion, one must find the probability that 3 x? > B under

=1
the simple alternative hypothesis H,, when the x; are
random variables resulting from transforming the z;
under H,. Consequently, although the x; are still nor-
mally distributed under H,, they are in general correlated
and have means and variances other than § and 1, respec-
tively. Under these conditions, the problem of determin-
ing the distribution of y = 3 x? under H, is quite

i-1
difficult. Accordingly, in order to estimate the power of
the test by “Monte Carlo” methods when H, is the hy-
pothesis that the population in case B is distributed with
the given normal distribution and H, the hypothesis that
the population has a distribution with the true density
function fz(x) given above, the z; were transformed to
the x; under H,, and then the first two moments and
correlation of the x; were computed under H,. Then 152
sets of the four x; were generated from a table of random
numbers, and for each set 3 x? was computed. In 99.3%

1=1
of the cases, 3 x? > 95, and in 95.4% of the cases
i=1
2 x} > 13.3. Thus the power is quite high.
i=1

The power of the test may be increased by using more
than four quantiles. For example, the median may also
be used. If five quantiles are used, the transformations
for the first four remain the same (a useful property of
the Gram-Schmidt procedure) and the fifth transforma-
tion is given by

_ 1
X5 = @ > (25 — &) — Ye Xy Ty3X3 T y2 X2 Plsxl)

where

y2=(1- Plzg)—l/z (st - P12 Pls)

Ys & Bl [ (Paa ~ P13 pm) (1 - sz)l/z - (st ™ P12 Pls)
(p2s = prz pss) (1 = p2)*]
T+ = o { pis — Bs Bu [Pas (1 - P]z)l/z "(st = pr2 Pls)

P13 P15 (1 - Pl";)”z]

=B (1= 5 (p2s —

(p2s — prz prs) (1 — p2)1/2 —

P12 Pl5) = Pia Pls}
-_— szs )-1/2

A generalization of this procedure to m quantiles will
now be given. Let z{ , 2] <++ z/ denote m sample
quantiles of orders p;, p, *** pn and let g ,2; **° L.
denote the corresponding population quantﬂes First, let

=(1=vyi-vi—

X1 = 21
X, =0y %y + 22 %,

Xz = Q3 Xy F a2 %2 F 03335

In T Q1 Xs T QX+ 20 F Gy X1 t Gy 2

The set of coefficients {a;;} will be determined re-
cursively so as to satisfy the following conditions:

(1) Ex) =0
@) E(z) =1
(3) E(xia) = 0,i ]

ifj=12°c'm

The first condition, E(x;) = 0, was satisfied by nor-
malizing the z! . Applying conditions (2) and (3) one has

E(xz) = az + az + 2(121022p12 = 1
E(xlxz) =a,; + a, P12 = 0
Solving for a,, and a,,, one obtains:

= (1= pz)

11
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Q1 = —p1z2 Q22
To determine the coefficients of x;, one has:

2 — 2 2 2
E(x?)=a2+al +al

+ 2a;, [1131 p1z T as2 (an p1z T a2 Pza)] =1

E(xyx;) = @a1 + Qa3 p1a =0

E(x:%3) = Ga2 + G35 (@21 p1a + G22p2s) =0
Solving for the a,;, i = 1, 2, 3, one obtains:
@53 = [1 = p = (21 p1s + G22p2c)®] /2
Q51 = — p13 G

Q3 = _(az1 p1s + a2 923) Q33

12

Continuing in this manner, one obtains, in general,

Oy = [1 - Plzk - (a21 Pk + a,, sz)2
- (031 Pk + a;, P2k + ass pak)z
— e = (ak—l,l Pk + Qx-1,2 P2k

LR R o e

Apy = —pix Gk

Ag2 = -(021 pix + az; sz) Ayx

ayz = _(031 p F Gsz pox + Gz Pak) Qxx
Qg1 = ""(ak-l,1 pi F o1,z pox

+ e oo+ Gy i1 presk) Gik

Expressions for the transformation of additional quan-
tiles can now be obtained with a corresponding increase
in the complexity of the expressions.
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IV. A GOODNESS-OF-FIT TEST DESIGNED FOR HIGH
POWER AGAINST BIMODAL DISTRIBUTION

A set of n observations of a random variable obtained
as a result of a space experiment may contain sample
values taken from two distinct populations rather than
from a single population as one might ordinarily expect.
For example, one may be interested in the “energy spec-
trum” of incoming particles. If the samples are all taken
from a single source it is reasonable to assume that the
parent population is unimodal, ie., that the population
density has a unique local maximum. But if the samples
come from either of two possible sources, with proba-
bility p that a sample is taken from one source and
probability 1 — p that a sample is taken from the other
then the observations can be regarded as a set of sample
values of a random quantity with a probability density
function given by f(x) = pfi(x) + (I — p) f.(x), where p
is the probability of the first source, 1 — p the proba-
bility of the second source, f, the density function of the
first source, and f, the density function of the second
source. This case could occur if there are two sources of
radiation, say solar electrons and cosmic ray electrons.
Then f may not be unimodal even if f, and f. were.

If doubt exists as to which is the true situation, one
would like to apply a goodness-of-fit test on the basis of
which one may decide whether the parent population is
actually unimodal or whether its distribution is described
by the above density function f(x), which is very likely to
be bimodal. We shall consider only the cases where
f1.f- are density functions of normal populations. Although
the test previously presented is applicable to a general
class of probability distributions including those under
consideration here, it is in general desirable to apply
additional tests when they are available. Hence another
goodness-of-fit test, also based on four sample quantiles
and a large value of n, will be presented.

Let H, denote the null hypothesis that a set of n ob-
servations came from a normally distributed population,
with (unknown) mean p and (unknown) variance o, Let
21, 24, 23, z{ be four sample quantiles of orders p,, p., ps,
p, wherep, + p, = p, + p, = 1,0 <P < p: < ps
< p. < 1, and let {3, &3, &3, £{ denote the corresponding
quantiles of the distribution. Since x and ¢? are unknown,
the optimal estimates obtained by minimizing, say, the
sum of the variances of 7 and ' will be used in the test to
replace x and o, namely

%= 0.141 (z] + z, ) + 0.359 (z + z.)
o = 0258 (z; — z/ ) + 0.205 (2, — z/ )
where p, = 0.0668, p, = 0.2912, p, = 0.7088, p, = 0.9332

It is convenient to first normalize the sample quantiles
by means of the transformations

Zi — zi— 7%
- ’? ,i=12 3,4

zi = =

o

so that the z; are the corresponding sample quantiles of
a normal population with zero mean and unit variance.
{As has been seen, 7+ and G are arbitrarily good estimates

for . and o when n is large, as is the case here.)

Now let
y1=z4—z3—(zz—z1)=z4-z3-zz+z1
yz=z3_zz_(z4"‘z3+z2"'z1)

=223—2ZZ_Z4+z1

The following goodness-of-fit test is now applied, based
on the values of y, and y, as follows: If either
| 41| > kiory, > ky, reject Ho. If |y | = kiand y. = k.,
accept H,. If ¢ denotes the significance level of the test,
k, and k, are determined by the relation prob (| y. | > k)
+ prob (y. > k.) — prob (|y.| > ki, y» > ks) = e
Table 28 gives values of k, and k, for ¢ = 0.05and = 0.01
for various values of n, where prob (| y.| > k) is taken
to be equal to prob (y, > k).

The choice of y, and y. for applying rejection criteria
is motivated by a need for a goodness-of-fit test which,
when applied to a null hypothesis of normality, would be
likely to have considerable power when the composite
alternative hypotheses, H,, is that the parent density is
bimodal. Since p, — p. = p. — ps, the criterion based
on the value of y, essentially tests for symmetry. How-
ever, since a bimodal distribution can possess sufficient
symmetry with respect to the intervals (¢,¢.) and ({5,8,),
so that H, would not be rejected solely on the basis of
the value of y,, the statistic y, is designed to detect the

13
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fact that a continuous bimodal density function has a
local minimum between the maxima (a consequence of
the theorem below); thus {; — ¢, is large in comparison
with £, — ¢ and &, — ¢, if the dip is between ¢, and
s. But if the dip occurs outside the interval ({,,{;) the
statistic y, will pick out this asymmetry; hence the high
power of the test.

Theorem: Let g(x) be a continuous probability density
function on — o < x < oo. If there exist four values
of x,say x, < x, < %, < %, such that

(1) f 2 g(x) dx = f ig(x)dx

(2) Xo — Xy =Xy — X3

(3) fsg(x)dx< iz:ijfzg(x)dx

then g(x) has a local minimum on the interval (x,,x,) (and
hence is not unimodal).

Proof: Let 8§ = x, — x;, and let x; — x, = k(x; — %))
= k3. If g(x) has no local minimum on (x,,x,), then g(x)
is either constant on (x,,x,), or else has exactly one local
maximum on (x,,%,), which maximum must occur on the
interval (x,,x;), since g(x) cannot be strictly monotone in-
creasing or decreasing on (x:,x,) because of conditions
(1) and (2). So let m = min [g(x.), g(xs)], say m = g(x).

Then one has

z8 z2
f glx)dx = m(x; — x;) = mk § = kf g(x)dx
12 Il
=X T % g(x) dx
X2 ™ X .'cl

which contradicts condition (3). This proves the theorem.

Although the converse of the theorem is of course not
true, the theorem suggests that a dip in the actual density
function may be detected by comparing the interval
length z; — z, with the interval lengths z, — z, and
%y — 23, when H, cannot be rejected on the basis of the
value of y, alone. The method of determining k, and k.
will now be presented.

14

Under the null hypothesis of normality (and also as-
suming the limiting normal distribution and moments of
the z;), one has

Ey) ==& —(—-8&)=0

0'2(!/1) = Ui + (7: + O’Z + 0': - 2P34 O3 04 — 2P24 02 04
+ 2P14 01 04 + 2p23 0y 03 — 2P13 g1 03 — 2P12 g1 02 = 20:

6.9155
n

+ 203 = 4piz + p1s) 0102 + 2pys 0% + 2pyg 02 =

E(ys) = 22 — 2 — &4 + & = 2(8 — 2L,) = —0.80

o¥y.) = 402 + 402 + o2 + 02 = 8p2s 0205 — 4pss 0504
+4pis o105 + 4pruor 00 —4praoior — 2puuoioy
= 2o'i + 80’;’ — 8p2s a: — 2p14 o'i

10.1436

+ 8(P13 - P12) o102 = oy

Now the next calculation is more important:
E(y1y2) = "'f - “'f + 20: - 20: + P13 01 O3 == P2y O3 O
+ 3p34 03 05 — 3p12 gy 02 = 0]

Thus, under the null hypothesis that the parent popula-
tion is normal, y, and y. are, fortunately, independent
normally distributed random variables with variances
inversely proportional to the sample size n. It is an easy
matter, therefore, to determine k, and k. for given values
of n and ¢ such that prob (| y.| > ki) = prob (y. > k)
= ¢, (where 2¢; — €2 = &),

The above goodness-of-fit test was applied to the same
two cases, f4 and fz, considered in Section 3. In case A
with n = 500, the results were | y: | = 0.736, y, = —0.864,
so that H, is rejected at both ¢ = 0.05 and ¢ = 0.01. In
case B with n = 250, |y, | = 0.602, y. = —0.198, so that
H, is also rejected for both ¢ = 0.05 and ¢ = 0.01.

A set of 250 values was then taken from a table of
random (unit) normal deviates, and the test applied to
this set. The results were . = 0.005, ¢ = 1.000, ’y1|
= 0.057, y, = —0.953 so that H, would be accepted for
both ¢ = 0.05 and ¢ = 0.01. (The excellent agreement
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between the sample and population moments is fortuitous
and should not be construed as being typical. The esti-
mators are not that good.)

To determine the power of the test for a given H,, it
is necessary to compute the first two moments of the
sample quantiles under H,, and then the moments of y,
and y, which are still (asymptotically) normal. The power
is given by P = prob (|y.| > ki) + prob (y: > ki)
— prob ( | i | > ki, y: > k,), where k, and k, are deter-
mined under H,. If the density function under H, is not
symmetric about its mean, y, and y, in general will not
be independent so that prob (|y:| > ki, y: > ki)
5= prob (|y:| > ki) prob (y. > k). In this event one
may use the method and tables given in Ref. 8 to com-
pute the joint probability.

Since the deviation from normality in case B is con-
siderably less than that for case A, the power of the test
was detcrmined for the alternative hypothesis that the
population has a distribution with density function fx(x).
It was found that for ¢ = 0.05, P = 0.997, and for
e = 001, P = 0.938. Thus the power is quite high in
this case.

The fact that the test was devised with a specific H,
and H, in mind does not preclude its use in testing other
null hypotheses. In the general case the sample quantiles
are still asymptotically normal so that k, and k, can be
readily determined, although y, and y, will in general be
correlated. Although the p; could be chosen to maximize
the power of the test under various alternatives, in prac-
tical situations involving a space probe experiment, they
must be chosen in advance; since the sample quantiles
are also used to estimate p and o, the same optimal set
has been given and used in the numerical calculations.

Since the validity of the goodness-of-fit tests presented
here depends strongly upon the assumed normality of the
distribution of the sample quantiles used, a comparison
was made between the limiting normal density function
of the sample quantile z, of order p, = 0.0668 and the
rigorous density function g(x) for the case where n = 250
and the parent population is distributed according to the
unit normal density. The quantile of order p, was chosen
for two reasons. First, as mentioned before, the deviation
from normality is more pronounced for quantiles at the
tails of the parent density function so that the results
obtained would be conservative. Second, the calculations
would be simplified, as can be seen from the rigorous
expression for the density function of z; given by Ref. 5:

gx) = () (r = p) [F@)]*[1 = Fx)] "+ f(x)

where p = the greatest integer equal to or less than np,.
In this case u = 16 and

F(x) = et i dt

2r | .
f(x) = F'(x)
The density function of the limiting normal distribution
of z, is given by
1
0.122 V2

In Fig. 3, plots of g(x) and h(x) are exhibited. It is evident
that h(x) is an extremely close approximation to g(x).

e-v2 (o)’

h(x) =

Work is continuing at the Jet Propulsion Laboratory
with a view to using these data compression systems
using quantiles on further planetary and deep space
probes.

n =250 p = 00668

PR N - +15Y
MR SRz 2 ”‘"[ % (63’55)]
9 +(Z)or - ) [FLa} [1- £ ()" 4" i)
where
- | 1.2 -
f'(¢\')-——7-(2'_)| 5 exp( X ), Flx)= F'(x)

w=[n0]=16

/| \
g; / 0.50 ‘K"

~-190 -1.80 -1.70 -1.60 -1.50 ~140 -.30 -1.20 -L.I0
X

Fig. 3. A comparison between an approximate normal
density function g(x) and rigorous normal
density function h(x)
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Table 1. Estimators of the mean of a normal distribution with minimum variance

Estimators (/’2)

Efficiency (ﬁ)

10

12

14

16

18

20

0.0968 [2(0.0540) + z(0.9460)] + 0.1787 [z(0.1915) + z(0.8085)]
+ 0.2245 [2(0.3898) + z(0.6102)]

0.0559 [z(0.0310) + z(0.9690)1 + 0.1119 [z(0.1154) + 2(0.8846)]
+ 0.1550 [z(0.2481) + z(0.7519)] + 0.1772 [2(0.4126) + z(0.5874)]

0.0366 [z(0.0203) + z(0.9797)] + 0.0751 [2(0.0768) + z(0.9232)]
+ 0.1086 [z(0.1684) + z(0.8316)] + 0.1334 [z(0.2887) + z(0.7113)]
+ 0.1463 [z2(0.4274) + 2(0.5726)]

0.0246 [z(0.0135) + z(0.9865)]1 + 0.0522 [z(0.0525) + z(0.9475)]
+ 0.0786 [z(0.1178) + 2(0.8822)] + 0.1012 [z(0.2075) + z(0.7925)]
+ 0.1174 [2(0.3163) + 2(0.6837)] + 0.1260 [z(0.4373) + z(0.5627)]

0.0160 [z(0.00868) + z(0.99132)]1 + 0.0360 [2(0.0351) + z(0.9649)]
+ 0.0568 [2(0.0814) + z2(0.9186)]1 + 0.0773 [z(0.1484) + z(0.8516)]
+ 0.0941 [2(0.2342) + z(0.7658)] + 0.1061 [z(0.3336) + z(0.6664)1
+ 0.1137 [z2(0.4430) + z(0.5570)]

0.0130 [z(0.00730) + z(0.99270)] + 0.0272 [z(0.0277) + z(0.9723)]
+ 0.0424 [2(0.0619) + z(0.9381)]1 + 0.0594 {z(0.1129) + z(0.8871)]
+ 0.0745 [z(0.1802) + z(0.8198)] + 0.0866 [z(0.2602) + z(0.7398)]
+ 0.0962 [z(0.3512) + z(0.6488)] + 0.1007 [2(0.4501) + z(0.5499)]

0.0106 [z(0.00587) + z(0.99412)]1 + 0.0232 ([z(0.0229) + z(0.9771))
+ 0.0371 [z(0.0532) + z(0.9468)]1 + 0.0507 [z(0.0972) + z(0.9028)]
+ 0.0626 [2(0.1540) + 2(0.8460)]1 + 0.0709 [z(0.2211) + z(0.7789)]
+ 0.0775 [2(0.2942) + z(0.7058)] + 0.0827 [z(0.3745) + z(0.6255)]
+ 0.0847 [z(0.4579) + z(0.5421)]

0.0081 [z(0.00448) + 2z(0.99552)]1 + 0.0184 [2(0.0175) + z(0.9825)]
+ 0.0322 [z(0.0429) + z(0.9571)] + 0.0465 [2(0.0828) + z(0.9172)]
+ 0.0568 [2(0.1355) + z(0.8645)1 + 0.0613 [z(0.1950) + z(0.8050)]
+ 0.0657 [2(0.2564) + z(0.7436)]1 + 0.0695 [z(0.3254) + z(0.6746)]
+ 0.0698 [z(0.3939) + z(0.6061)]1 + 0.0717 [z(0.4639) + z(0.5361)]

0.9560

0.9722

0.9808

0.9859

0.9892

0.9915

0.9931

0.9943

16




Table 2. Estimators of the standard deviation of a normal distribution with minimum variance
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K Estimators (0) Efficiency )

6 0.0549 [z(0.9896) —z(0.0104)] + 0.1244 [z(0.9452) —z(0.0548)] 0.8943
+ 0.1825 [z(0.8304) —z(0.1696)]

8 0.0307 [z(0.99451) —z(0.00549)] + 0.0730 [z(0.9714) —z(0.0286)] 0.9294
+ 0.1168 [z(0.9149) —2(0.0851)] + 0.1477 [2(0.7983) —z(0.2017)]

10 0.0192 [2(0.99669) —z(0.00331)] + 0.0467 [z(0.9830) —z(0.0170)] 0.9496
+ 0.0776 [z(0.9505) —z(0.0495)] + 0.1063 [z(0.8876) —=z(0.1124)]
+ 0.1228 [z(0.7727) —z(0.2273)]

12 0.0133 [z(0.99776) —z(0.00224)] + 0.0323 [2(0.9888) —z{(0.0112)] 0.9622
+ 0.0544 [2(0.9680) —z(0.0320)] + 0.0767 [z(0.9290) —z(0.0710)]
+ 0.0955 [z2(0.8628) —z(0.1372)] + 0.1041 [z(0.7512) —z(0.2488)]

14 0.00962 [z(0.99843) —z(0.00157)] + 0.0235 [z(0.99217) -2z(0.00783)] 0.9706
+ 0.0399 [z(0.9779) —z(0.0221)]1 + 0.0571 [z2(0.9517) —z(0.0483)]
+ 0.0734 [z(0.9086) —z(0.0914)] + 0.0860 [z(0.8409) —=z(0.1591)]
+ 0.0898 [z(0.7332) —z(0.2668)]

16 0.00725 [z(0.99884) —z(0.00116)] + 0.0178 [z(0.99425) —z(0.00575)] 0.9764
+ 0.0305 [z(0.9839) —=z(0.0161)] + 0.0439 [z(0.9652) —z(0.0348)]
+ 0.0572 [2(0.9352) —2z(0.0648)] + 0.0691 [z(0.8894) —2z(0.1106)]
+ 0.0776 [z(0.8216) —2z(0.1784)] + 0.0785 [z(0.7178) —z(0.2822)]

18 0.00510 [z(0.999214) —z(0.000786)]1 + 0.0129 [z(0.99606) —2z(0.00394)] 0.9807
+ 0.0225 [z(0.9889) —z(0.0111)] + 0.0333 [z(0.9759) —z(0.0241)]
+ 0.0448 [z(0.9546) —z(0.0454)] + 0.0557 [z2(0.9226) —z(0.0774)]
+ 0.0652 [z(0.8760) —z(0.1240)1 + 0.0719 [z(0.8090) —z(0.1910)]
+ 0.0716 [2(0.7079) —z(0.2921)]

20 0.00414 [2(0.999367) —2(0.000633)] + 0.0103 [z(0.99691) —z(0.00309)] 0.9839

+ 0.0183 [2(0.99128) —z(0.00872)] + 0.0273 [z(0.9810) —z(0.0190)]
+ 0.0366 [z(0.9647) —z(0.0353)] + 0.0456 [z(0.9403) —z(0.0597)]
+ 0.0539 [z(0.9060) —z(0.0940)] + 0.0608 [z(0.8583) —z(0.1417)]
+ 0.0649 [z(0.7919) —z(0.2081)] + 0.0632 [z(0.6952) —z(0.3048)]

17
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Table 3. Estimators of the mean of a normal distribution when ¢%(2) + ¢%(5) is minimized

Estimators (;:)

Efficiency (;2)

10

12

14

16

18

20

0.0497 [2(0.0231) + z(0.9769)1 + 0.1550 [z(0.1180) + z(0.8820)]
+ 0.2953 [2(0.3369) + z(0.6631)]

0.0249 [z(0.0119) + z(0.9881)]1 + 0.0764 [z(0.0604) + z(0.9396)]
+ 0.1568 (z(0.1721) + 2(0.8279)]1 + 0.2419 [z(0.3711) + z(0.6289)]

0.0147 [z(0.00718) + z(0.99282)] + 0.0443 [z(0.0358) + z(0.9642)]
+ 0.0897 [z(0.1008) + z(0.8992)] + 0.1490 [z(0.2172) + z(0.7828)]
+ 0.2023 [z(0.3942) + 2(0.6058)]

0.0094 [z(0.00463) + z(0.99537)] + 0.0280 [z(0.0230) + z(0.9770)]
+ 0.0562 [2(0.0642) + z(0.9358)] + 0.0940 [z(0.1377) + z(0.8623)]
+ 0.1384 [2(0.2524) + 2(0.7476)]1 + 0.1740 [z(0.4102) + z(0.5898)]

0.0068 [z(0.00341) + z(0.99659)1 + 0.0198 [z(0.0165) + z(0.9835)]
+ 0.0388 [z(0.0454) + 2(0.9546)] + 0.0637 [z(0.0959) + z(0.9041)]
+ 0.0941 {z(0.1737) + 2(0.8263)] + 0.1266 [z(0.2832) + 2(0.7168)]
+ 0.1502 [z(0.4233) + z(0.5767)}

0.0048 [z(0.00242) + 2(0.99758)] + 0.0142 [z(0.0119) + =z(0:9881)]
+ 0.0277 [2(0.0326) + z{0.9674)] + 0.0455 [z(0.0687) + 2(0.9313)]
+ 0.0672 [2(0.1246) + z(0.8754)] + 0.0918 [z(0.2033) + z(0.7964)]
+ 0.1163 [z(0.3070) + =z(0.6930)] + 0.1325 [z(0.4328) + z(0.5672)]

0.0041 [z(0.00208) + z(0.99792)]1 + 0.0113 [2(0.00980) + z(0.99020)]
+ 0.0214 [z(0.0260) + z(0.9740)] + 0.0347 [z(0.0538) + 2z(0.9462)]
+ 0.0510 [2(0.0962) + z(0.9038)]1 + 0.0691 [z(0.1564) + 2(0.8436)]
+ 0.0872 [2(0.2339) + 2(0.7661)1 + 0.1044 [2(0.3294) + 2(0.6706)]
+ 0.1168 [z(0.4404) + z(0.5596)]

0.0038 [z(0.00196) + z(0.99804)] + 0.0104 [z(0.00906) + z(0.99094)]
+ 0.0195 [z(0.0240 )+ z(0.9760)1 + 0.0304 [z(0.0488) + z(0.9512)]
+ 0.0426 [z(0.0853) + z(0.9147)] + 0.0558 [2(0.1341) + 2(0.8659)]
+ 0.0694 [z(0.1967) + z(0.8033)] + 0.0818 [z(0.2722) + z(0.7278)]
+ 0.0909 [z(0.3589) + z(0.6411)] + 0.0954 [z(0.4522) + z(0.5478)]

0.9459

0.9659

0.9767

0.9830

0.9873

0.9900

0.9922

0.9939

18




Table 4. Estimators of the standard deviation of a normal distribution when o2(1) + 0%(c) is minimized
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Estimators G)

Efficiency (3)

10

12

14

16

18

20

0.1088 [2(0.9769) —z(0.0231)] + 0.1952 [z(0.8820) —z(0.1180)]

+ 0.1228 [z(0.6631) —z(0.3369)]

0.0600 [z(0.9881) —z(0.0119)] + 0.1249 [z(0.9396) —z(0.0604)]

+ 0.1528 [z(0.8279) —=z(0.1721)]

0.0379 [2(0.99282) —z(0.00718)] +
+ 0.1181 [z(0.8992) —z(0.1008)]
+ 0.0540 [z(0.6058) —z(0.3942)]

0.0255 [z(0.99537) —z(0.00463)] +
+ 0.0877 [z(0.9358) —z(0.0642)]
+ 0.0933 [2(0.7476) ~2(0.2524)}

0.0191 [z(0.99659) —=z(0.00341)]1 +
+ 0.0671 [z(0.9546) —z(0.0454)]
+ 0.0898 [z(0.8263) —z(0.1737)]
+ 0.0291 [2(0.5767) —z(0.4233)]

0.0141 [2(0.99758) —z(0.00242)] +
+ 0.0521 [2(0.9674) —2(0.0326)]
+ 0.0787 [2(0.8754) —z(0.1246)]
+ 0.0590 [z(0.6930) —z(0.3070)]

0.0121 [z(0.99792) —z(0.00208)] +
+ 0.0424 [z(0.9740) —z(0.0260)]
+ 0.0674 [2(0.9038) —z(0.0962)]
+ 0.0640 [z(0.7661) —z(0.2339)]
+ 0.0174 [2(0.5596) —2z(0.4404)]

0.0113 [z(0.99804) —2(0.00196)] +
+ 0.0392 [z(0.9760) —z(0.0240)}
+ 0.0594 [z(0.9147) —2z(0.0853)}
+ 0.0601 [2(0.8033) —z(0.1967)]
+ 0.0334 [z(0.6411) —2z(0.3589)]

+ 0.0789 [z(0.6289)

—z(0.3711)]

0.0829 [z(0.9642) —z(0.0358)]

+ 0.1184 [z(0.7828)

—-z(0.2172)]

0.0576 [z(0.9770) —z(0.0230)]

+ 0.1047 [z(0.8623)
+ 0.0394 [z(0.5898)

—2(0.1377)]
—2(0.4102)]

0.0432 [z(0.9835) —z(0.0165)]

+ 0.0849 [z(0.9041)
+ 0.0731 [z(0.7168)

—z(0.0959)1
—2(0.2832)]

0.0327 [2(0.9881) —z(0.0119)]

+ 0.0688 [z(0.9313)
+ 0.0770 [z(0.7964)
+ 0.0225 [2(0.5672)

0.0270 [z(0.99020) —

+ 0.0567 [z(0.9462)
+ 0.0709 [z(0.8436)
+ 0.0464 [2(0.6706)

0.0251 {z(0.99094) —

+ 0.0512 [z(0.9512)
+ 0.0627 {z(0.8659)
+ 0.0503 [z(0.7278)
+ 0.0116 [2(0.5478)

—z(0.0687)]
—2(0.2033)]
—2(0.4328)]

z(0.00980)]

—2z(0.0538)]
—z(0.1564)]
—2(0.3294)]

z(0.00906)]

—2(0.0488)]
—z(0.1341)]
—2{(0.2722)]
—2(0.4522)]

0.8541

0.9050

0.9328

0.9501

0.9609

0.9688

0.9739

0.9767

19
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Table 5. Estimators of the mean of a normal distribution when o%(5) + 2 0%(c) is minimized

Estimators (1)

Efficiency (ﬁ)

10

12

14

16

18

20

0.0424 [2(0.0193) + 2(0.9807)] + 0.1401 [z(0.1009) + z(0.8991)]
+ 0.3175 [z(0.3071) + z(0.6929)]

0.0212 [z(0.00998) + z(0.99002)1 + 0.0668 [z(0.0515) + z(0.9485)]
+ 0.1473 [2(0.1511) + 2(0.8489)1 + 0.2647) [z(0.3481) + z(0.6519)]

0.0122 [z(0.00590) + z(0.99410)]1 + 0.0379 [z(0.0301) + z(0.96991]
+ 0.0801 [z(0.0865) + z(0.9135)]1 + 0.1451 [z(0.1934) + z(0.8066)]
+ 0.2247 [2(0.3757) + z(0.6243)]

0.0078 [z(0.00381) + z(0.99619)1 + 0.0237 [z(0.0191) + 2(0.9809)]
+ 0.0489 [z(0.0543) + z(0.9457)]1 + 0.0858 [z(0.1195) + z(0.8805)]
+ 0.1383 [z(0.2273) + z(0.7727)1 + 0.1955 (z(0.3943) + z(0.6057)]

0.0052 [2(0.00255) + z(0.99745)] + 0.0157 [2(0.0128) + z(0.9872)}
+ 0.0321 [2(0.0362) + z(0.9638)]1 + 0.0556 [z(0.0790) + z(0.9210)]
+ 0.0878 [2(0.1488) + z(0.8512)] + 0.1306 [z(0.2552) + z(0.7448)]
+ 0.1730 [z(0.4078) + 2(0.5922)]

0.0038 [2(0.00189) + z(0.99811)]1 + 0.0114 [2(0.00940) + z(0.99060)]
+ 0.0230 [z(0.0264) + z(0.9736)]1 + 0.0390 [z(0.0569) + z(0.9431)]
+ 0.0602 [2(0.1055) + z(0.8945)] + 0.0877 [z(0.1779) + z(0.8221)]
+ 0.1220 [z(0.2808) + z(0.7192)]1 + 0.1529 ([z(0.4197) + z(0.5803)]

0.0032 [z(0.00161) + z(0.99839)1 + 0.0091 [z(0.00769) + 2(0.99231)]
+ 0.0178 [z(0.0210) + 2(0.9790)] + 0.0295 [2(0.0444) + z(0.9556)]
+ 0.0444 [2(0.0809) + z(0.9191)] + 0.0631 [z(0.1338) + z(0.8662)]
+ 0.0860 [2(0.2073) + z(0.7927)] + 0.1125 [2(0.3054) + z(0.6946)]
+ 0.1344 [2(0.4303) + z(0.5697)]

0.0024 [z(0.00122) + z(0.99878)] + 0.0070 [2(0.00592) + z(0.99408)]
+ 0.0136 [z(0.0161) + z(0.9839)] + 0.0222 [z(0.0339) + z(0.9661)]
+ 0.0332 [z(0.0613) + z(0.9387)] + 0.0468 [z(0.1008) + z(0.8992)]
+ 0.0634 [2(0.1553) + z(0.8447)] + 0.0831 [z(0.2276) + z(0.7724)]
+ 0.1052 [z(0.3210) + z(0.6790)] + 0.1231 [2(0.4363) + z(0.5637)]

0.9368

0.9610

0.9736

0.9808

0.9853

0.9887

0.9912

0.9927

20




Table 6. Estimators of the standard deviation of a normal distribution when ¢%(2) + 2 0%(0) is minimized
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Estimators (o)

Efficiency (3)

10

12

-
LS

16

18

20

0.0940 (z(0.9807) —z(0.0193)] + 0.1847 [z(0.8991) —z(0.1009)]

+ 0.1387 [z2(0.6929) —z(0.3071)]

0.0518 [z(0.99002) —z(0.00998)] +
+ 0.1534 [z(0.8489) —z(0.1511)]

0.0321 [z(0.99410) —z(0.00590)] +
+ 0.1115 [z2(0.9135) —z(0.0865)]
+ 0.0656 [z(0.6243) —z(0.3757)]

0.0215 [2(0.99619) —z(0.00381)] +
+ 0.0800 [z(0.9457) —z(0.0543)}
+ 0.1023 [z(0.7727) —2z(0.2273)]

+ 0.0587 [z(0.9638) —z(0.0362)]
+ 0.0920 [2(0.8512) —2(0.1488)]
+ 0.0382 [z(0.5922) —z(0.4078)]

0.0113 [z(0.99811) —z(0.00189)1 +
+ 0.0453 [z(0.9736) —z(0.0264)]
+ 0.0760 [z(0.8945) —2z(0.1055)]
+ 0.0699 [z2(0.7192) —z(0.2808)]

0.0096 [z(0.99839) —z(0.00161)] +
+ 0.0367 [z(0.9790) —z(0.0210)]
+ 0.0628 [z(0.9191) —z(0.0809)]
+ 0.0703 [z(0.7927) —2(0.2073)]
+ 0.0229 ([z(0.5697) —z(0.4303)]

0.0075 [z(0.99878) —z(0.00122)] +
+ 0.0294 [z(0.9839) —xz(0.0161)]
+ 0.0518 [z(0.9387) —z(0.0613)]
+ 0.0646 [2(0.8447) —2z(0.1553)]
+ 0.0484 [z(0.6790) —z(0.3210)]

0.1134 [2(0.9485) —z(0.0515)]

+ 0.0925 [z(0.6519)

—2(0.3481)]

0.0735 [z(0.9699) —z(0.0301)]

+ 0.1251 [z(0.8066)

—2(0.1934)]

0.0502 [z(0.9809) —z(0.0191)]

+ 0.1023 [z(0.8805)
+ 0.0492 [z(0.6057)

—2(0.1195)]
—2(0.3943)]

0.0358 [z(0.9872) —z(0.0128)]

+ 0.0795 [z(0.9210)
+ 0.0849 [z(0.7448)

0.0273 [z2(0.99060) —

+ 0.0625 [z(0.9431)
+ 0.0812 [z(0.8221)
+ 0.0298 [z(0.5803)

—z(0.0790)1
--2(0.2552)]

2(0.00940)]

—-z(0.0569)1
—2(0.1779)]
—2z(0.4197)]

0.0224 {z(0.99231) —2(0.00769)]

+ 0.0508 [z(0.9556)
+ 0.0704 [z(0.8662)
+ 0.0567 [z2(0.6946)

—2(0.0444)]
—2(0.1338)]
—2(0.3054)]

0.0178 [z(0.99408) —z(0.00592)]

+ 0.0410 [z(0.9661)
+ 0.0603 (2(0.8992)
+ 0.0621 [z(0.7724)
+ 0.0192 [(0.5637)

—2(0.0339)]
—z(0.1008)]
—2(0.2276)}
—2(0.4363)]

0.8649

0.9107

0.9369

0.9531

0.9639

0.9711

0.9760

0.9801

21
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Table 7. Estimators of the mean of a normal distribution when ¢%(2) + 3 02(c) is minimized

Estimators (ﬁ)

Efficiency (ﬁ)

10

12

14

16

18

20

0.0389 [z(0.0175) + z(0.9825)] + 0.1306 [z(0.0922) + z(0.9078)]

+ 0.3305 [z(0.2858) + z(0.7142)]

0.0196 [z(0.00921) + z(0.99079)] + 0.0626 [z(0.0476) + z(0.9524)]

+ 0.1404 [z(0.1407) + z(0.8593)]

0.0114 [z(0.00548) + z(0.99452)] +
+ 0.0750 [z(0.0801) + z(0.9199)]
+ 0.2380 [z(0.3615) + =z(0.6385)]

0.0071 [z(0.00346) + z(0.99654)] +
+ 0.0455 [z(0.0500) + z(0.9500)]
+ 0.1360 [z(0.2140) + z(0.7860)]

0.0048 [z(0.00238) + z(0.99762)] +
+ 0.0300 [z(0.0337) + z(0.9663)]
+ 0.0838 [z(0.1396) + z(0.8604)]
+ 0.1847 [z(0.3983) + z(0.6017)]

0.0036 [2(0.00177) + z(0.99823)] +
+ 0.0215 [2(0.0245) + z(0.9755)]

+ 0.2774 [2(0.3314) +

2(0.6686)]

0.0351 [z(0.0277) + 2z(0.9723)}

+ 0.1405 [z(0.1811) +

z(0.8189)]

0.0218 [z(0.0175) + z(0.9825)]

+ 0.0812 [z(0.1108) +
+ 0.2084 [z(0.3823) +

2(0.8892)]
2(0.6177)]

0.0146 [z(0.0119) + z(0.9881)]

+ 0.0522 [z(0.0738) +
+ 0.1299 [z(0.2421) +

2(0.9262)]
z(0.7579)]

0.0106 [z(0.00876) + z(0.99124)]
+ 0.0365 [z(0.0530) + 2z(0.9470)]
+ 0.0569 [z(0.0987) + z(0.9013)] 4 0.0846 [z(0.1676) + z(0.8324)]
+ 0.1227 ([2(0.2682) + z(0.7318)] + 0.1636 [z(0.4116) + z(0.5884)]

0.0025 [z(0.0012) + z(0.99873)] + 0.0077 [z(0.00633) + z(0.99367)]

+ 0.0155 [2(0.0177) + z(0.9823)]
+ 0.0405 [z(0.0712) + z(0.9288)]
+ 0.0838 [2(0.1900) + z(0.8100)]
+ 0.1484 [z(0.4209) + z(0.5791)]

0.0022 ([z(0.00112) + z(0.99888)] +
+ 0.0126 [z(0.0149) + z(0.9851)]
+ 0.0314 [2(0.0572) + z(0.9428)]
+ 0.0609 [z(0.1465) + z(0.8535)]
+ 0.1077 [z(0.3094) + 2z(0.6906)]

+ 0.0263 [2(0.0383) +
+ 0.0592 [z(0.1201) +
+ 0.1161 [z(0.2878) +

2(0.9617)]
2(0.87991
2(0.7122)]

0.0064 [z(0.00541) + z(0.99459)]

+ 0.0208 [z(0.0314) +
+ 0.0445 [2(0.0947) +
+ 0.0816 [2(0.2166) +
+ 0.1319 [2(0.4307) +

2(0.9686)]
z(0.9053)]
z(0.7834)]
2(0.5693)]

0.9277

0.9568

0.9710

0.9790

0.9842

0.9897

0.9902

0.9922
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Table 8. Estimators of the standard deviation of a normal distribution when ¢%() + 3 0%(c) is minimized

K Estimators (3) Efficiency (;)

é 0.0865 [z(0.9825) —z(0.0175)] + 0.1764 [z(0.9078) —z(0.0922)] 0.8714
+ 0.1478 [z2(0.7142) —z(0.2858)]

8 0.0484 [z(0.99079) —z(0.00921)1 + 0.1075 [z(0.9524) —z(0.0476)] 0.9139
+ 0.1512 [2(0.8593) —z(0.1407)] + 0.1004 {z(0.6686) —z(0.3314)]

10 0.0300 [z(0.99452) —2z(0.00548)] + 0.0690 [z(0.9723) —z(0.0277)] 0.9389
+ 0.1072 [z(0.9199) —z(0.0801)] + 0.1264 [2(0.8189) —z(0.1811)]
+ 0.0728 [z(0.6385) —z(0.3615)]

12 0.0198 [2(0.99654) —z(0.00346)] + 0.0469 [z(0.9825) —z(0.0175)] 0.9545
+ 0.0761 [z(0.9500) —z(0.0500)] + 0.1000 [z(0.8892) —2z(0.1108)]
+ 0.1058 [z(0.7860) —z(0.2140)] + 0.0553 [z(0.6177) —z(0.3823)]

14 0.0140 [z(0.99762) —z(0.00238)] + 0.0337 [z(0.9881) —=z(0.0119)] 0.9649
+ 0.0557 [2(0.9663) —z(0.0337)] + 0.0765 [z(0.9262) —z(0.0738)]
+ 0.0909 [2(0.8604) —2z(0.1396)] + 0.0888 [z(0.7579) —=z(0.2421)]
+ 0.0432 [z(0.6017) —2z(0.3983)]

16 0.0107 [z(0.99823) —z(0.00177)]1 + 0.0256 [z(0.99124) —z(0.00876)] 0.9719
+ 0.0428 [z(0.9755) —z(0.0245)] + 0.0598 [z(0.9470) —z(0.0530)}
+ 0.0739 [z2(0.9013) —z(0.0987)] + 0.0815 [z(0.8324) —z(0.1676)]
+ 0.0742 [z(0.7318) —z(0.2682)] + 0.0338 [z(0.5884) —z(0.4116)]

18 0.0079 [z(0.99873) —2z(0.00127)] + 0.0194 [z(0.99367) —z(0.00633)] 0.9772
+ 0.0329 [z(0.9823) —z(0.0177)] + 0.0470 [z(0.9617) —z(0.0383)]
+ 0.0600 [2(0.9288) —z(0.0712)] + 0.0698 [z(0.8799) —z(0.1201)]
+ 0.0734 {z(0.8100) —z(0.1900)] + 0.0636 [z(0.7122) —z(0.2878)]
+ 0.0278 [z(0.5791) —z(0.4209)]

20 0.0069 [z(0.99888) —z(0.00112)] + 0.0166 [2(0.99459) —z(0.00541)] 0.9807
+ 0.0277 [2(0.9851) —2z(0.0149)1 + 0.0391 [z(0.9686) —z(0.0314)]
+ 0.0499 [2(0.9428) —z(0.0572)] + 0.0588 [z(0.9053) —2z(0.0947)]
+ 0.0643 [z(0.8535) —z(0.1465)1 + 0.0638 [z(0.7834) —z(0.2166)]
+ 0.0525 [z(0.6906) —z(0.3094)] + 0.0219 [z(0.5693) —z(0.4307)]
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Table 9. Estimators of the mean of a normal distribution with
minimum variance, for p,==0.01

K Estimators (7} Efficiency (1)

6 0.0968 [z(0.0540) + z(0.9460)] + 0.1787 [z(0.1915) + z(0.8085)] 0.9560
+ 0.2245 [z(0.3898) + 2(0.6102)]

8 0.0559 [z(0.0310) + z(0.9690)]1 + 0.1119 [z(0.1154) + z(0.8846)] 0.9722
+ 0.1550 [z(0.2481) + z(0.7519)] + 0.1772 [z(0.4216) + z(0.5874)]

10 0.0366 [z(0.0203) + z(0.9797)] + 0.0751 [z(0.0768) + z(0.9232)] 0.9808
+ 0.1086 [2(0.1684) + =z(0.8316)] + 0.1334 [z(0.2887) + z(0.7113)]
+ 0.1463 [z(0.4274) + z(0.5726)]

12 0.0246 [z(0.0135) + z(0.9865)] + 0.0522 (z(0.0525) + z(0.9475)] 0.9859
+ 0.0786 [z(0.1178) + z(0.8822)]1 + 0.1012 [2(0.2075) + 2(0.7925)]
+ 0.1174 {2(0.3163) + z(0.6837)] + 0.1260 [z(0.4373) + z(0.5627)]

14 0.0177 [z(0.01) + =z(0.99] + 0.0365 [z(0.0370) + z(0.9630)] 0.9892
+ 0.0571 [z(0.0839) + z(0.9161)] + 0.0764 [2(0.1507) + z(0.8493)]
+ 0.0934 [z(0.2349) + z(0.7651)] + 0.1063 [z(0.3349) + z(0.6651)]
+ 0.1126 [2(0.4438) + z(0.5562)]

16 0.0170 [z(0.01) + z(0.99] + 0.0320 [z(0.0342) + z(0.9658)] 0.9914
+ 0.0482 [z(0.0746) + z(0.9254)] + 0.0627 [z(0.1299) + z(0.8701)]
+ 0.0754 [2(0.1988) + z(0.8012)] + 0.0842 [z(0.2790) + z(0.7210)}
+ 0.0891 [2(0.3648) + z(0.6352)] + 0.0914 [z(0.4549) + 2(0.5451)]

18 0.0162 [z(0.01) + z(0.99)] + 0.0274 [z(0.0306) + z(0.9694)] 0.9928
+ 0.0423 [z(0.0661) + z(0.9339)] + 0.0541 [z(0.1148) + z(0.8852)]
+ 0.0640 [z(0.1730) + z(0.8270)]1 + 0.0718 [z(0.2417) + 2(0.7583)]
+ 0.0747 [z(0.3148) + 2(0.6852)] + 0.0754 [z(0.3893) + z(0.6107)}
+ 0.0741 [z(0.4641) + z(0.5359)]

20 0.0138 [z(0.01) + z(0.99)1 + 0.0174 [z(0.0223) + 2z(0.9777)] 0.9938
+ 0.0310 [z(0.0473) + z(0.9527)1 + 0.0427 [z(0.0848) + z(0.9152)]
+ 0.0531 [z(0.1323) + z(0.8677)] + 0.0627 [z(0.1904) + z(0.8096)]
+ 0.0673 [2(0.2565) + z(0.7435)] + 0.0687 [z(0.3234) + 2z(0.6766)]
+ 0.0704 [z(0.3925) + z(0.6075)] + 0.0729 [2(0.4629) + =z(0.5371)]
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Table 10. Estimators of the standard deviation of a normal distribution with

minimum variance, for p,==0.01

JPL TECHNICAL REPORT NO. 32-510

A
Estimators {0)

Y
K Efficiency (o)
é 0.0549 [z(0.9896) —z(0.0104)] + 0.1244 [2(0.9452) —z(0.0548)] 0.8943
+ 0.1825 [z(0.8304) —z(0.1696)]
8 0.0456 [z(0.99) —z(0.01)] + 0.0771 [z(0.9624) —z(0.0376)] 0.9260
+ 0.1139 [z(0.9026) —z(0.0974)1 + 0.1376 [z(0.7863) —z(0.2137)]
10 0.0410 [z(0.99) —z(0.01)] + 0.0543 [z(0.9703) —z(0.0297)] 0.9408
+ 0.0783 [z(0.9324) —z(0.0676)] + 0.0991 [z(0.8668) —z(0.1332)]
+ 0.1092 [z(0.7548) —z(0.2452)]
12 0.0382 {z(0.99) —z(0.01)] + 0.0419 [z2(0.9746) —z(0.0254)] 0.9488
+ 0.0585 [z(0.9474) —z(0.0526)] + 0.0739 [z(0.9037) —z(0.0963)]
+ 0.0858 [z{0.8361) —=z{C.1639M] + 0.089C [2(0.7293) —z(0.2707)]
14 0.0363 [z(0.99) —z(0.01)] + 0.0345 [z(0.9771) —z(0.0229)] 0.9536
+ 0.0467 [2(0.9560) —z(0.0440)] + 0.0582 [z(0.9235) —z(0.0765)]
+ 0.0678 [z(0.8766) —z(0.1234)]1 + 0.0742 [z(0.8090) —z(0.1910)]
+ 0.0737 {z(0.7082) —z(0.2918)]
16 0.0348 [2(0.99) —z(0.01)] + 0.0288 [z(0.9792) —z(0.0208)] 0.9567
+ 0.0381 [z(0.9622) —z(0.0378)] + 0.0471 (z(0.9373) —2(0.0627)]
+ 0.0554 [z(0.9023) —2z(0.0977)} + 0.0618 [z(0.8540) —z(0.1460)]
+ 0.0652 [z(0.7878) —2(0.2122)] + 0.0630 [z(0.6920) —z(0.3080)]
18 0.0339 [z(0.99) —z(0.01)] + 0.0255 [z(0.9804) —z(0.0196)] 0.9588
+ 0.0333 [z(0.9657) —z(0.0343)] + 0.0406 [z(0.9446) —2z(0.0554)]
+ 0.0471 [2(0.9162) —z(0.0838)] + 0.0525 [z(0.8784) —z(0.1216)]
+ 0.0558 [z(0.8287) —z(0.1713)] + 0.0562 [2(0.7637) —z(0.2363)]
+ 0.0522 [2(0.6741) —z(0.3259)]
20 0.0332 [z(0.99) —z(0.01)] + 0.0231 [z(0.9812) —z(0.0188)] 0.9603

+ 0.0296 [z(0.9682) —z(0.0318)] + 0.0360 [z(0.9501) —z(0.0499)]
+ 0.0418 [2(0.9256) —2(0.0744)] + 0.0461 {z(0.8940) —z(0.1060)]
+ 0.0491 [z(0.8541) —z(0.1459)] -+ 0.0502 [z(0.8037) —z(0.1963)]
+ 0.0485 [z(0.7398) —z(0.2602)] + 0.0425 [z(0.6548) —z(0.3452)]
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Table 11. Estimators of the mean of a normal distribution when
o*(p) + o*(o) is minimized, for p,=0.01

K Estimators (%) Efficiency (’ﬁ)

6 0.0497 [2(0.0231) + z(0.9769)] + 0.1550 [2(0.1180) + 2(0.8820)] 0.9459
+ 0.2953 [2(0.3369) + z(0.6631)]

8 0.0249 [z(0.0119) + z(0.9881)1 + 0.0764 [z(0.0604) + z(0.9396)] 0.9659
+ 0.1568 [z(0.1721) + z(0.8279)] + 0.2419 [z(0.3711) + z(0.6289)]

10 0.0189 [z(0.01) + z(0.99] + 0.0469 [z(0.0414) + 2z(0.9586)] 0.9777
+ 0.0905 [z(0.1080) + z(0.8920)1 + 0.1467 [z(0.2239) + z(0.7761)]
+ 0.1970 [z(0.3971) + =2(0.6029)]

12 0.0169 [z(0.01) + z(0.99)] + 0.0327 [z(0.0330) + 2(0.9670)] 0.9842
+ 0.0589 [z(0.0780) + 2(0.9220)] + 0.0933 [z(0.1524) + z(0.8476)]
+ 0.1333 [2(0.2643) + z(0.7357)] + 0.1644 [z(0.4150) + z(0.5850)]

14 0.0155 [z(0.01) + z(0.99)1 + 0.0243 [z(0.0280) + z(0.9720)] 0.9880
+ 0.0413 [z(0.0601) + z(0.9399)] + 0.0638 [z(0.1118) + z(0.8882)]
+ 0.0913 [2(0.1882) + z(0.8118)] + 0.1208 [z(0.2936) + 2(0.7064)]
+ 0.1430 [2(0.4265) + 2(0.5735)]

16 0.0148 [z(0.01) + z(0.991 + 0.0200 [z(0.0252) + z(0.9748)] 0.9906
+ 0.0321 [z(0.0509) + z2(0.9491)]1 + 0.0475 [z(0.0901) + z(0.9099)]
+ 0.0666 [z(0.1465) + 2(0.8535)] + 0.0879 [2(0.2232) + 2(0.7768)]
+ 0.1085 [z(0.3212) + z(0.6788)] + 0.1226 [z(0.4376) + z(0.5624)]

18 0.0138 [z(0.01) + z(0.99)] + 0.0155 [z(0.0222) + z(0.9778)] 0.9921
+ 0.0242 [z(0.0418) + z(0.9582)]1 + 0.0354 [z(0.0711) + z(0.9289)]
+ 0.0496 [z(0.1131) + z(0.8869)] + 0.0660 [z(0.1705) + z(0.8295)]
+ 0.0834 [z(0.2447) + z(0.7553)] + 0.1005 [z(0.3362) + z(0.6638)]
+ 0.1116 [2(0.4436) + z(0.5564)]

20 0.0131 {z(0.01) + z(0.991 + 0.0126 [z(0.0201) + z(0.9799)1 0.9932
+ 0.0189 [2(0.0356) + z(0.9644)1 + 0.0274 [z(0.0584) + z(0.9416}]
+ 0.0384 [z(0.0910) + 2(0.9090)1 + 0.0516 [z(0.1357) + z(0.8643)]
+ 0.0656 [z(0.1942) + z(0.8058)] + 0.0799 [z(0.2663) + 2(0.7337)]
+ 0.0926 [z(0.3530) + z(0.6470)]1 + 0.0999 [z(0.4496) + z(0.5504)]
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Table 12. Estimators of the standard deviation of a normal distribution when

o*(f) + ¢*(5) is minimized, for p,=0.01

JPL TECHNICAL REPORT NO. 32-510

Estimators (3)

Efficiency G)

10

12

14

16

18

20

0.1088 [2(0.9769) —z(0.0231)] + 0.1952 [z(0.8820) —z(0.1180)]
+ 0.1228 [2(0.6631) —z(0.3369)]

0.0600 [2(0.9881) —z(0.0119)] + 0.1249 [z(0.9396) —z(0.0604)]
+ 0.1528 [z2(0.8279) —z(0.1721)] + 0.0789 [z(0.6289) —z(0.3711)]

0.0470 [2(0.99) —z(0.01)] + 0.0849 [2(0.9586) —z(0.0414)]
+ 0.1160 [z(0.8920) —z(0.1080)] + 0.1139 [z(0.7761) —z(0.2239)}
+ 0.0514 [2(0.6029) —z(0.3971)]

0.0427 [z(0.99) —2(0.01)] + 0.0625 [z(0.9670) —z(0.0330)]
+ 0.0867 [z(0.9220) —2(0.0780)] + 0.0986 [z(0.8476) —z(0.1524)]
+ 0.0857 [z(0.7359) —z(0.2643)] + 0.0357 [z(0.5850) —2z(0.4150)]

0.0396 [2(0.99) —z(0.01)] + 0.0483 [z(0.9720) —z(0.0280)]
+ 0.0664 [2(0.9399) —z(0.0601)] + 0.0802 [z(0.8882) —=z(0.1118)]
+ 0.0830 [z(0.8118) —z(0.1882)1 + 0.0669 [z(0.7064) —z(0.2936)]
+ 0.0266 [2(0.5735) —z(0.4265)]

0.0378 [z(0.99) —=z(0.01)] + 0.0405 [z(0.9748) —z(0.0252)]
+ 0.0544 [z(0.9491) —z(0.0509)] + 0.0658 [2(0.9099) —=z(0.0901)]
+ 0.0723 [z(0.8533) —z(0.1565)] + 0.0689 [z(0.7768) —z(0.2232)]
+ 0.0516 [z(0.6788) —2z(0.3212)] + 0.0196 [z(0.5624) —2(0.4376)}

0.0358 [z(0.99) —=z(0.01)] + 0.0324 [z(0.9778) —2z{(0.0222)]
+ 0.0432 [z(0.9582) —z(0.0418)] + 0.0536 [2(0.9289) —z(0.0711)]
+ 0.0619 [z(0.8869) —z(0.1131)] + 0.0648 [z(0.8295) —z(0.1705)]
+ 0.0592 [2(0.7553) —=z(0.2447)] + 0.0434 [z(0.6638) —z(0.3362))
+ 0.0162 [2(0.5564) —z(0.4436)]

0.0342 {z(0.99) —z(0.01)1 + 0.0267 [z(0.9799) —z(0.0201)]
+ 0.0353 [z(0.9644) —z(0.0356)] + 0.0444 [z(0.9416) —z(0.0584)]
+ 0.0529 [z(0.9090) —z(0.0910)] + 0.0585 [z(0.8643) —2z(0.1357)]
+ 0.0583 [2(0.8058) —z(0.1942)] + 0.0512 [2(0.7337) —z(0.2663)]
+ 0.0359 {z(0.6470) —2z(0.3530)] + 0.0130 [z(0.5504) —z(0.4496)]

0.8541

0.9050

0.9294

0.9417

0.9489

0.9532

0.9564

0.9585
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Table 13. Estimators of the mean of a normal distribution when
o*(1) + 2 ¢%(0) is minimized, for p,=0.01

A A
K Estimators {(u) Efficiency (u)

6 0.0424 [2(0.0193) + z(0.9807)] + 0.1407 [z(0.1009) + z(0.8991)] 0.9368
+ 0.3175 [z(0.3071) + z(0.6929)]

8 0.0212 [z(0.00998) + z(0.99002)] + 0.0668 [2(0.0515) + =2(0.9485)] 0.9610
+ 0.1473 [z(0.1511) + z(0.8489)]1 + 0.2647 [z(0.3481) + z(0.6519)]

10 0.0183 [z(0.01) + z(0.99)] + 0.0423 [z(0.0384) + z(0.9616)] 0.9758
+ 0.0825 [z(0.0982) + z(0.9018)] + 0.1428 [2(0.2058) + z(0.7942)]
+ 0.2141 [2(0.3823) + z(0.6177)]

12 0.0164 [z(0.01) + z(0.99)1 + 0.0296 [2(0.0310) + z(0.9690)] 0.9830
+ 0.0534 [z(0.0714) + 2(0.9286)] + 0.0870 [2(0.1394) + =z(0.8606)]
+ 0.1329 [2(0.2460) + z(0.7540)1 + 0.1807 [z(0.4031) + z(0.5969)]

14 0.0152 [z(0.01) + z(0.99)] + 0.0226 {z(0.0268) + 2(0.9732)] 0.9873
+ 0.0382 [z(0.0566) + 2(0.9434)] + 0.0592 [2(0.1042) + z(0.8958)]
+ 0.0870 [z(0.1758) + z(0.8242)1 + 0.1222 [z(0.2779) + 2(0.7221)]
+ 0.1556 {z(0.4179) + z(0.5821)]

16 0.0142 [z(0.01) + z(0.99]1 + 0.0176 [z(0.0234) + z(0.9766)] 0.9897
+ 0.0282 [z(0.0460) + z(0.9540)1 + 0.0422 [z(0.0805) + z(0.9195)]
+ 0.0605 [z(0.1309) + z(0.8691)]1 + 0.0843 [z(0.2017) + z(0.7983)]
+ 0.1138 [2(0.2994) + z(0.7006)] + 0.1392 [z2(0.4275) + z(0.5725)]

18 0.0135 [z(0.01) + z(0.99)] + 0.0143 [z(0.0211) + z(0.9789)] 0.9916
+ 0.0222 [z(0.0393) + z(0.9607)] + 0.0323 [2(0.0659) + z(0.9341)]
+ 0.0454 [2(0.1044) + z(0.8956)]1 + 0.0616 [2(0.1570) + z(0.8430)1
+ 0.0819 [z(0.2277) + z(0.7723)] + 0.1050 [z(0.3202) + z(0.6798)]
+ 0.1238 [z(0.4359) + z(0.5641)]

20 0.0130 [z(0.01) + z(0.99)] + 0.0119 [z(0.0196) + z(0.9804)] 0.9929
+ 0.0176 [2(0.0342) + z(0.9658)] + 0.0253 [2(0.0553) + z(0.9447)]
+ 0.0351 [z(0.0851) + z(0.9149)] + 0.0477 [z(0.1259) + z(0.8741)]
+ 0.0628 [z(0.1807) + z(0.8193)] + 0.0791 [z(0.2513) + 2z{(0.7487)]
+ 0.0968 [2(0.3381) + z(0.6619)1 + 0.1107 [z(0.4434) + 2(0.5566)]
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Table 14. Estimators of the standard deviation of a normal distribution when

o*(2) + 2 ¢°(5) is minimized, for p,==0.01
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X Estimators (0) Efficiency (0)

6 0.0940 [z(0.9807) -z(0.0193)] + 0.1847 [z(0.8991) -z(0.1009)] 0.8649
4+ 0.1387 [z2(0.6929) —z(0.3071)]

8 0.0518 [z(0.99002) —z(0.00998)] + 0.1134 [2(0.9485) —2z{(0.0515)] 0.9107
+ 0.1534 [z(0.8489) —z(0.1511)] + 0.0925 [z(0.6519) —z(0.3481)]

10 0.0456 [z(0.99) —z(0.01)] + 0.0776 [z(0.9616) —z(0.0384)] 0.9319
+ 0.1097 [z(0.9018) —2(0.0982)] + 0.1179 [z(0.7942) —z(0.2058)]
+ 0.0599 [z(0.6177) —z(0.3823)]

12 0.0416 [z(0.99) —=z(0.01)] + 0.0573 [z(0.9690) —2z(0.0310)] 0.9432
+ 0.0808 [2(0.9286) —z{(0.0714)] + 0.0965 {z(0.8606) —z(0.1394)]
+ 0.0918 [z(0.7540) —z(0.2460)] + 0.0424 [z(0.5969) —z(0.4031)]

14 0.0389 [z(0.99) —=z(0.01)] + 0.0453 [z(0.9732) —z(0.0268)] 0.9498
4+ 0.0626 [z2(0.9434) —z(0.0566)] + 0.0768 [z(0.8958) —z(0.1042)1
+ 0.0829 [z(0.8242) —z(0.1758)] + 0.0724 [z(0.7221) —2(0.2779)]
+ 0.0314 [2(0.5821) —z(0.4179)]

16 0.0367 [z(0.99) —=2(0.01)] + 0.0361 [2(0.9766) —z(0.0234)] 0.9541
+ 0.0491 [z(0.9540) —z(0.0460)1 + 0.0610 [z(0.9195) —z(0.0805)]
+ 0.0698 [2(0.8691) ~2(0.1309)] + 0.0719 [2(0.7983) —2(0.2017)]
+ 0.0603 {z(0.7006) —z(0.2994)} + 0.0251 [z(0.5725) —z(0.4275)]

18 0.0350 [z(0.99) —z(0.01)] + 0.0300 [z2(0.9789) —z(0.0211)] 0.9569
+ 0.0404 [2(0.9607) —z(0.0393)] + 0.0502 [z(0.9341) —z(0.0659)]
+ 0.0588 [z(0.8956) —z(0.1044)] + 0.0637 (z(0.8430) —z(0.1570)]
+ 0.0624 [z(0.7723) —2(0.2277)] + 0.0495 [z(0.6798) —z(0.3202)]
+ 0.0198 [z(0.5641) —z(0.4359)]

20 0.0339 [2(0.99) —z(0.01)] + 0.0254 [z(0.9804) —z(0.0196)] 0.9589

+ 0.0333 [z(0.9658) —z(0.0342)] + 0.0416 [2(0.9447) —z(0.0553))
+ 0.0497 [2(0.9149) —z(0.0851)] + 0.0562 [z(0.8741) —z(0.1259)]
+ 0.0588 [z(0.8193) —z(0.1807)] + 0.0544 [z(0.7487) —z(0.2513)]
+ 0.0409 {2(0.6619) —2(0.3381)] + 0.0158 [2(0.5566) —z(0.4434)]

29



JPL TECHNICAL REPORT NO. 32-510

Table 15. Estimators of the mean of a normal distribution when
() + 3 ¢3(5) is minimized, for p,=0.01

Y A
K Estimators (u) Efficiency (u)

6 0.0389 [z(0.0175) + z(0.9825)] + 0.1306 [z(0.0922) + z(0.9078)] 0.9277
+ 0.3305 [z(0.2858) + z(0.7142)]

8 0.0208 [z(0.01) + z(0.99)] + 0.0632 [z(0.0492) + z(0.9508)] 0.9574
+ 0.1406 [z(0.1426)’+ z(0.8574)] + 0.2754 [2(0.3327) + z(0.6673)}

10 0.0179 [z(0.01) + z(0.99)] + 0.0398 [z(0.0368) + z(0.9632)] 0.973¢9
+ 0.0778 [z(0.0929) + z(0.9071)1 + 0.1386 [2(0.1947) + 2(0.8053)1
+ 0.2259 [z(0.3700) + z(0.6300)]

12 0.0162 [z(0.01) + z(0.99)1 + 0.0281 [2(0.0300) + z(0.9700)] 0.9819
+ 0.0504 [z(0.0682) + z(0.9318)] + 0.0828 [z(0.1323) + z(0.8677)]
+ 0.1311 [z(0.2345) + z(0.7655)] + 0.1914 [z(0.3935) + z(0.6065)]

14 0.0150 [z(0.01) + =z(0.99)] + 0.0212 [z(0.0257) + 2z(0.9743)] 0.9865
+ 0.0358 [z(0.0536) + z(0.9464)]1 + 0.0560 [z(0.0985) + z(0.9015)]
+ 0.0838 [z(0.1664) + z(0.8336)] + 0.1227 [z(0.2662) + z(0.7338)]
+ 0.1655 [z(0.4103) + z(0.5897)]

16 0.0141 [z(0.01) + z(0.99)1 + 0.0168 [z(0.0229) + z(0.9771)] 0.9892
+ 0.0266 [z(0.0442) + z(0.9558)] + 0.0400 [2(0.0768) + 2(0.9232)]
+ 0.0578 [z(0.1248) + =z(0.8752)] + 0.0817 [z(0.1928) + z(0.8072)]
+ 0.1144 [2(0.2882) + z(0.7118)] + 0.1486 [2(0.4202) + 2(0.5798)]

18 0.0133 [z(0.01) + z(0.991 + 0.0134 [2(0.0206) + z(0.9794)] 0.9910
+ 0.0206 [2(0.0373) + 2(0.9627)] + 0.0302 [z(0.0623) + 2(0.9377)]
+ 0.0426 {z(0.0981) + z(0.9019)] + 0.0584 [z(0.1479) + z(0.8521)}
+ 0.0793 [z(0.2149) + 2(0.7851)] + 0.1071 [z(0.3063) + 2(0.6937)]
+ 0.1345 [2(0.429)) + z(0.5709)]

20 0.0130 [z(0.01) + z(0.99)] + 0.0120 [z(0.0196) + z(0.9804)] 0.9927
+ 0.0180 [2(0.0345) + z(0.9655)] + 0.0254 [2(0.0560) + z(0.9440)]
+ 0.0346 [z(0.0855) + z(0.9145)1 + 0.0461 [z(0.1254) + z(0.8746)]
+ 0.0600 [z(0.1779) + z(0.8221)] + 0.0772 [z(0.2452) + 2(0.7548)]
+ 0.0981 [z(0.3319) + z(0.6681)] + 0.1156 [z(0.4400) + z(0.5600)]
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Table 16. Estimators of the standard deviation of a normal distribution when
*(R) + 3 o%(5) is minimized, for p,=0.01
K Estimators (3) Efficiency G)
6 0.0865 [z(0.9825) —z(0.0175)]1 + 0.1764 [2(0.9078) —z(0.0922)] 0.8714
+ 0.1478 [z2(0.7142) —z(0.2858)]
8 0.0509 [z(0.99) —z(0.01)] 4+ 0.1077 [z(0.9508) —z(0.0492)] 0.9134
+ 0.1502 [z(0.8574) —2z(0.1426)] + 0.0992 [z(0.6673) —2z(0.3327)]
10 0.0448 [z(0.99) —z(0.01)] + 0.0736 [2(0.9632) —z(0.0368)] 0.9332
+ 0.1056 [z(0.9071) —2z(0.0929)] + 0.1189 [2(0.8053) --z(0.1947)]
+ 0.0660 [z2(0.6300) —z(0.3700)]
12 0.0410 [z(0.99) —z(0.01)] + 0.0547 [z(0.9700) —z(0.0300)] 0.9440
+ 0.0774 [2(0.9318) —z(0.0682)] + 0.0943 [z(0.8677) —z(0.1323)]
+ 0.0945 [z(0.7655) —z(0.2345)] + 0.0472 [z(0.6065) —z{0.3935)]
14 0.0383 [2(0.99) —z(0.01)1 + 0.0427 [z(0.9743) —z(0.0257)] 0.9504
+ 0.0596 [z(0.9464) —z(0.0536)] + 0.0744 [z(0.9015) —z(0.0985)]
+ 0.0828 [z(0.8336) —z(0.1664)] + 0.0764 [z(0.7338) —z(0.2662)]
+ 0.0353 [z(0.5897) —2(0.4103)]
16 0.0363 [z(0.99) —z(0.01)] + 0.0346 [z(0.9771) —z(0.0229)] 0.9545
+ 0.0468 [z(0.9558) —z(0.0442)] + 0.0588 [z(0.9232) —z(0.0768)]
+ 0.0684 [2(0.8752) ~—2(0.1248)] + 0.0722 [2(0.8072) —z(0.1928)]
+ 0.0638 [z(0.7118) —z(0.2882)] + 0.0284 [z(0.5798) —z(0.4202)]
18 0.0346 [2(0.99) —z(0.01)] + 0.0283 [z(0.9794) —z(0.0206)] 0.9573
+ 0.0379 [z(0.9627) —z(0.0373)] + 0.0478 [z(0.9377) —z(0.0623)}
+ 0.0567 [z(0.9019) —z(0.0981)] + 0.0627 [z(0.8521) —z(0.1479)]
+ 0.0637 [z(0.7851) —z(0.2149)] + 0.0544 [z(0.6937) ~2z(0.3063)]
+ 0.0233 [z(0.5709) —z(0.4291)]
20 0.0339 [z(0.99) —z(0.01)] + 0.0256 [z(0.9804) —z(0.0196)] 0.9590

+ 0.0338 [2(0.9655) —z(0.0345)] + 0.0417 [z(0.9440) —z(0.0560)]
+ 0.0488 [z(0.9145) —z(0.0855)]1 + 0.0546 [z(0.8746) —z(0.1254)]
+ 0.0569 [2(0.8221) —z(0.1779)1 + 0.0543 [z(0.7548) —z(0.2452)]
+ 0.0429 [2(0.6681) —z(0.3319)] + 0.0172 [z(0.5600) —z(0.4400)]
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Table 17. Estimators of the mean of a normal distribution with
minimum variance, for p,=0.025

Estimators (;/:)

A
Efficiency (u)

12

14

16

18

20

0.0968 [z(0.0540) + z(0.9460)] + 0.1787 [z(0.1915) + z(0.8085)]
+ 0.2245 [z(0.3898) + z(0.6102)]

0.0559 [z(0.0310) + z(0.9690)1 + 0.1119 [z(0.1154) + z(0.8846)]
+ 0.1550 [z(0.2481) + z(0.7519)] + 0.1772 [2(0.4126) + z(0.5874)]

0.0426 [z(0.025) + z(0.975)1 + 0.0768 [2(0.0839) + z(0.9161)]
+ 0.1084 [z(0.1764) + 2(0.8236)] + 0.1304 [z(0.2949) + z(0.7051)]
+ 0.1418 [z(0.4297) + 2z(0.5703)]

0.0387 [z(0.025) + z(0.975)] + 0.0566 [z(0.0698) + z(0.9302)]
+ 0.0786 [z(0.1371) + =z(0.8629)1 + 0.0972 [2(0.2243) + z(0.7757)]
+ 0.1109 [z(0.3278) + z2(0.6722)] + 0.1180 [z(0.4415) + z(0.5585)]

0.0352 [z(0.025) + z(0.975)] + 0.0414 [z(0.0583) + z(0.9417)]
+ 0.0581 [z(0.1077) + z(0.8923)] + 0.0740 [2(0.1735) + z(0.8265)]
+ 0.0882 [z(0.2537) + z(0.7463)]1 + 0.0987 [z(0.3473) + z(0.6527)]
+°0.1044 [2(0.4476) + z(0.5524)]

0.0331 [2(0.025) + z(0.975)] + 0.0327 [z(0.0517) + z(0.9483)]
+ 0.0455 [z(0.0905) + z(0.9095)] + 0.0585 [2(0.1422) + z(0.8578)]
+ 0.0709 [2(0.2064) + z(0.7936)] + 0.0807 [z(0.2825) + z(0.7175)]
+ 0.0870 [z(0.3656) + z(0.6344)] + 0.0916 [z(0.4539) + z(0.5461)]

0.0310 [z(0.025) + z(0.975)] + 0.0257 [z(0.0458) + z(0.9542)]
+ 0.0374 [z(0.0770) + z(0.9230)] + 0.0494 [z(0.1210) + z(0.8790)]
+ 0.0591 [z(0.1749) + z(0.8251)] + 0.0673 [z(0.2380) + z(0.7620)]
+ 0.0731 [z(0.3080) + z(0.6920)] + 0.0780 [z(0.3822) + z(0.6178)]
+ 0.0790 [z(0.4620) + z(0.5380)]

0.0312 [z(0.025) + z(0.975)] + 0.0259 [z(0.0465) + z(0.9535)]
+ 0.0359 [2(0.0769) + 2(0.9231)] + 0.0465 [z(0.1184) + z(0.8816)]
+ 0.0555 [z(0.1691) + z(0.8309)] + 0.0624 [z(0.2285) + z(0.7715)]
+ 0.0613 [z(0.2924) + 2(0.7076)] + 0.0614 [z(0.3490) + z(0.6510)]
+ 0.0624 (z(0.4140) + z(0.5860)]1 + 0.0575 [z0.4721) + z(0.5279)]

0.9560

0.9722

0.9806

0.9851

0.9876

0.9892

0.9903

0.9910
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Table 18. Estimators of the standard deviation of a normal distribution with

minimum variance, for p,==0.025
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Estimators (c;)

Efficiency (?r)

10

12

14

16

18

20

0.0953 [z(0.975) —=z(0.025)] + 0.1249%
+ 0.1609 {z(0.8036) —z(0.1964)]

0.0842 [z(0.975) —z(0.025)] + 0.0825
+ 0.1070 [2(0.8741) —z(0.1259)] +

0.0779 [z(0.975) —z(0.025)]1 + 0.0606
+ 0.0772 12(0.9052) —z(0.0948)] +
+ 0.0945 [z(0.7316) —z(0.2684)]

0.0741 [z2(0.975) —z(0.025)] + 0.0484
+ 0.0600 [z(0.9213) —z(0.0787)] +

N NATLTY TN ONTA __ _iN
+ VNIVUT [ 4\V.OV/ I/ L\V-!?z:’)} +

0.0713 [z(0.975) —z(0.025)]1 + 0.0402
+ 0.0490 [z(0.9314) —z(0.0686)] +
+ 0.0626 [z(0.8481) —z(0.1519)1 +
+ 0.0636 [z(0.6882) —z(0.3118)]

0.0693 [z(0.975) —=z(0.025)] + 0.0346
+ 0.0417 [z(0.9381) —z(0.0619)1 +
+ 0.0529 [z(0.8719) —z(0.1281)] +
+ 0.0569 [z(0.7589) —z(0.2411)] +

0.0679 ([z(0.975) —2(0.025)]1 + 0.0303
+ 0.0359 [z(0.9432) —z(0.0568)] +
+ 0.0461 [2(0.8888) —z(0.1112)] +
+ 0.0514 [z(0.7990) —z(0.2010}] +
+ 0.0428 [2(0.6517) —z(0.3483)]

0.0676 [z(0.975) —z(0.025)] + 0.0294
+ 0.0348 [2(0.9442) —z(0.0558)] +
+ 0.0417 [z(0.8932) —2z(0.1068)] +
+ 0.0451 [2(0.8180) —z(0.1820)] +
+ 0.0396 1[z(0.7068) —z(0.2932)] +

[z(0.9203) —z(0.0797)]

[z(0.9389) —z(0.0611)]
0.1198 [z(0.7609) —z(0.2391)]

[2(0.9483) —z(0.0517)]
0.0903 ([z(0.8380) —z(0.1620)]

[2(0.9535) —2(0.0465)]
0.0701 [z(0.8744) —z(0.1256)]

0.0744 [z(D 7049) —z(0,2031)]

PARS A 2 e

[2(0.9571) —2z(0.0429))
0.0565 [z(0.8960) —z(0.1040)]
0.0660 [2(0.7826) —z(0.2174)]

[2(0.9596) —2(0.0404)]

0.0478 [z(0.9095) —z(0.0905)]
0.0563 [z(0.8232) —z(0.1768)]
0.0526 [z(0.6705) —z(0.3295)]

[2(0.9614) —z(0.0386)]

0.0412 [z(0.9194) —z(0.0806)]
0.0501 [z(0.8492) —z(0.1508)]
0.0493 [z(0.7354) —z(0.2646)]

[2(0.9617) —z(0.0383)]

0.0393 [z(0.9210) —z(0.0790)]
0.0439 [2(0.8592) —z(0.1408)]
0.0439 [2(0.7672) —2z(0.2328)]
0.0326 [z(0.6311) —z(0.3689)]

0.8777

0.8965

0.9051

0.9098

0.9126

0.9144

0.9156

0.9164
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Table 19. Estimators of the mean of a normal distribution when
o*(5) + o%(5) is minimized, for p,=0.025

~ A
K Estimators (u) Efficiency (u)

6 0.0525 [z(0.025) + z(0.975)] + 0.1554 [z(0.1211) + 2(0.8789)} 0.9470
+ 0.2921 [z(0.3389) + z(0.6611)]

8 0.0429 [2(0.025) + z(0.975)] + 0.0848 [z(0.0834) + =2(0.9166)] 0.9698
+ 0.1527 [2(0.1978) + z(0.8022)] + 0.2196 [z(0.3841) + z(0.6159)]

10 0.0379 [z(0.025) + z(0.975)] + 0.0562 [z(0.0663) + z(0.9337)] 0.9793
+ 0.0932 [z(0.1393) + z(0.8607)] + 0.1377 [z(0.2522) + z(0.7478)]
+ 0.1750 [z(0.4097) + z(0.5903)]

12 0.0347 {z(0.025) + z(0.975)] + 0.0405 [z(0.0561) + z(0.9439)] 0.9841
+ 0.0636 [z(0.1070) + z(0.8930)1 + 0.0921 [z(0.1836) + z(0.8164)]
+ 0.1230 [z(0.2897) + z(0.7103)] + 0.1461 [z(0.4256) + z(0.5744)]

14 0.0325 [z(0.025) + z(0.975)1 + 0.0313 [z(0.0499) + z(0.9501)] 0.9869
+ 0.0463 [z(0.0881) + z(0.9119)] + 0.0649 [2(0.1426) + =z(0.8574)]
+ 0.0874 [z(0.2175) + z(0.7825)] + 0.1107 [z(0.3160) + z(0.6840)]
+ 0.1269 [z(0.4355) + z(0.5645)]

16 0.0308 [2(0.025) + z(0.975)] + 0.0246 [z(0.0450) + z(0.9550)} 0.9886
+ 0.0352 [z(0.0745) + z(0.9255)]1 + 0.0485 [z(0.1157) + =z(0.8843)]
+ 0.0644 [z(0.1712) + z{(0.8288)] + 0.0825 [z(0.2439) + z(0.7561)]
+ 0.1002 [z(0.3347) + z(0.6653)] + 0.1138 {z(0.4415) + z(0.5585)]

18 0.0296 [z(0.025) + z(0.975)] + 0.0199 [z(0.0418 + z(0.9582)] 0.9898
+ 0.0274 [z(0.0649) + z(0.9351)] + 0.0381 [z(0.0968) + 2z(0.9032)]
+ 0.0509 [z(0.1414) + 2z(0.8586)]1 + 0.0637 [z(0.1981) + z(0.8019)]
+ 0.0786 [2(0.2679) + z(0.7321)] + 0.0923 [z(0.3539) + z(0.6461)]
+ 0.0995 [z(0.4501) + z(0.5499)]

20 0.0288 [z(0.025) + z(0.975)] + 0.0172 [z(0.0398) + z(0.9602)] 0.9906
+ 0.0229 [z(0.0593) + =z(0.9407)1 + 0.0303 [z(0.0857) + z(0.9143)]
+ 0.0387 [z(0.1200) + z(0.8800)] + 0.0493 [z(0.1627) + 2(0.8373)]
+ 0.0620 [z(0.2184) + z(0.7816)] + 0.0737 [z(0.2859) + z(0.7141)]
+ 0.0849 [z(0.3643) + z(0.6357)] + 0.0922 [2(0.4537) + z(0.5463)]
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Table 20. Estimators of the standard deviation of a normal distribution when

o*(}) + ¢2(5) is minimized, for p,=0.025
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Estimators (;)

Efficiency (G)

10

12

14

16

18

20

0.1139 [z(0.975) —z(0.025)]1 + 0.1938 {2(0.8789) —=z(0.1211)]

+ 0.1204 [z(0.6611) —=z(0.3389)]

0.0962 [2(0.975) —=z(0.025)] + 0.1266
+ 0.1376 [z(0.8022) —z(0.1978)] +

0.0868 [z(0.975) —z(0.025)] + 0.0914
+ 0.1087 [z(0.8607) —=z(0.1393)] +
+ 0.0418 [z(0.5903) —z(0.4097)]

0.0805 [z(0.975) —z(0.025)] + 0.0695
+ 0.0852 [z(0.8930) —z(0.1070)] +
+ 0.0725 [z(0.7103) —z(0.2897)] +

0.0763 [2(0.975) —z(0.025)] + 0.0556
+ 0.0676 [z(0.9119) —z(0.0881)] +
+ 0.0730 [2(0.7825) —z(0.2175)1 +
+ 0.0218 [2(0.5645) —z(0.4355)]

0.0729 [z(0.975) —z(0.025)] + 0.0450
+ 0.0549 [2(0.9255) —z(0.0745)] +
+ 0.0657 [z(0.8288) —z(0.1712)] +
+ 0.0456 [2(0.6653) —z(0.3347)] +

0.0704 [z(0.975) —z(0.025)] + 0.0372
+ 0.0448 [2(0.9351) —z(0.0649)] +
+ 0.0589 [z(0.8586) —z(0.1414)] +
+ 0.0520 [z(0.7321) —z(0.2679)] +
+ 0.0134 [2(0.5499) —z(0.4501)]

0.0688 [z(0.975) —z(0.025)] + 0.0326
+ 0.0385 [2(0.9407) —z(0.0593)] +
+ 0.0491 [2(0.8800) —z(0.1200)] +
+ 0.0519 {z(0.7816) —z(0.2184)] +
+ 0.0313 [2(0.6357) —z(0.3643)] +

[(0.9166) —z(0.0834)]
0.0664 [2(0.6159) —z(0.3841)]

[z(0.9337) —2z(0.0663)]
0.0975 [2(0.7478) —2z(0.2522)]

[2(0.9439) —z(0.0561)]
0.0891 [z(0.8164) —z(0.1836)]
0.0290 [z(0.5744) —2z(0.4256)]

[2(0.950) —z(0.0499)]
0.0747 (z(0.8574) —z(0.1426)]
0.0564 [2(0.6840) —z(0.3160)]

(2(0.9550) —z(0.0450)]

0.0625 [z(0.8843) —z(0.1157)]
0.0613 [z(0.7561) —z(0.2439}]
0.0174 {z(0.5585) —z(0.4415)]

[2(0.9582) —z(0.0418)]

0.0533 [z(0.9032) —z(0.0968)]
0.0582 [z(0.8019) —z(0.1981)]
0.0371 [2(0.6461) —2z(0.3539)]

[2(0.9602) —z(0.0398)]

0.0448 [z(0.9143) —z(0.0857)]
0.0521 [2(0.8373) —z(0.1627)]
0.0447 [2(0.7141) —2z(0.2859)]
0.0115 [2(0.5463) —2(0.4537)]

0.8524

0.8843

0.8982

0.9055

0.9098

0.9125

0.9143

0.9155
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Table 21. Estimators of the mean of a normal distribution when
o*() + 2 ¢%(5) is minimized, for p,=0.025

K Estimators (2) Efficiency (//2)

) 0.0507 [z(0.025) + z(0.975)] + 0.1424 [z(0.1110) + 2(0.8890)] 0.9414
+ 0.3069 [z(0.3154) + z(0.6846)]

8 0.0416 [z(0.025) + z(0.975)1 + 0.0772 [z(0.0780) + z(0.9220)] 0.9675
+ 0.1455 [z(0.1826) + z(0.8174)] + 0.2357 [z(0.3678) + z(0.6322)]

10 0.0369 [z2(0.025) + 2(0.975)] + 0.0510 [z(0.0626) + z(0.9374)] 0.9781
+ 0.0860 [z(0.1287) + z(0.8713)] + 0.1356 [z(0.2350) + z(0.7650)]
+ 0.1905 [z(0.3971) + 2z(0.6029)1

12 0.0339 [z(0.025) + z(0.975)1 + 0.0370 [z(0.0535) + z(0.9465)] 0.9833
+ 0.0580 [z(0.1000) + z(0.9000)] + 0.0862 [z(0.1696) + z(0.8304)]
+ 0.1243 [z(0.2720) + z(0.7280)]1 + 0.1606 [z(0.4155) + z(0.5845)]

14 0.0320 [z(0.025) + z(0.975)] + 0.0290 [z(0.0482) + z(0.9518)] 0.9863
+ 0.0430 [z(0.0836) + z(0.9164)] + 0.0608 [z(0.1344) + z(0.8656)]
+ 0.0838 [z(0.2048) + z(0.7952)] + 0.1127 [z(0.3010) + z(0.6990)]
“+ 0.1387 [z(0.4276) + z(0.5724)]

16 0.0303 [z2(0.025) + z(0.975)] + 0.0224 [z(0.0435) + z(0.9565)] 0.9880
+ 0.0319 [z(0.0701) + 2z(0.9299)1 + 0.0441 [z(0.1074) + z(0.8926)]
+ 0.0596 [z(0.1582) + z(0.8418)] + 0.0801 [2(0.2264) + z(0.7736)]
+ 0.1050 [z(0.3175) + z(0.6825)] + 0.1266 [2(0.4341) + z(0.5659)}

18 0.0292 [z(0.025) + z(0.975)] + 0.0192 [2(0.0410) + z(0.9590)] 0.9895
+ 0.0266 [z(0.0636) + z(0.9364)]1 + 0.0354 [2(0.0942) + 2(0.9058)]
+ 0.0466 [z(0.1341) + z(0.8659)] + 0.0608 [z(0.1873) + =z(0.8127)]
+ 0.0773 [z(0.2551) + z(0.7449)] + 0.0954 [z(0.3407) + z(0.6593)]
+ 0.1095 [2(0.4438) + 2z(0.5562)]

20 0.0287 [z(0.025) + z(0.975)] + 0.0173 [z(0.0396) + z(0.9604)] 0.9905
+ 0.0232 [z(0.0597) + z(0.9403)] + 0.0298 [2(0.0859) + z(0.9141)]
+ 0.0380 [z(0.1192) + z(0.8808)] + 0.0485 [2(0.1618) + 2(0.8382)]
+ 0.0608 [z(0.2159) + z(0.7841)] + 0.0740 [2(0.2826) + z(0.7174)]
+ 0.0861 [2(0.3626) + z(0.6374)]1 + 0.0936 [z(0.4527) + z(0.5473)]
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Table 22. Estimators of the standard deviation of a normal distribution when

o) + 2 ¢*(5) is minimized, for p,=0.025
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K Estimators @ Efficiency (3)

6 0.1098 [z(0.975) —=2(0.025)] + 0.1819 [z(0.8890) —z(0.1110)] 0.8588
+ 0.1304 [z(0.6846) —z(0.3154)]

8 0.0935 [z(0.975) —z(0.025)] + 0.1174 [z(0.9220) —z(0.0780)] 0.8869
+ 0.1376 [z(0.8174) —z(0.1826)] + 0.0754 [z(0.6322) —z(0.3678)]

10 0.0847 [2(0.975) —z(0.025)] + 0.0843 [z(0.9374) —z(0.0626)] 0.8997
+ 0.1042 {z(0.8713) —z(0.1287)1 + 0.1024 [z(0.7650) —z(0.2350)]
+ 0.0490 [z(0.6029) —z(0.3971)}

12 0.0789 [z(0.975) —z(0.025)] + 0.0643 [z(0.9465) —z(0.0535>] 0.9065
+ 0.0800 [z(0.9000) —z(0.1000)] + 0.0879 [z(0.8304) —z(0.1696)]
4+ 0.0789 [z(0.7280) —=z(0.2720)] + 0.0348 [z(0.5845) —z(0.4155)]

14 0.0752 [z(0.975) —z(0.025)] + 0.0521 [2(0.9518) —z(0.0482)] 0.9104
+ 0.0640 [z(0.9164) —z(0.0836)]1 + 0.0722 [z(0.8656) —z(0.1344)]
+ 0.0737 [z(0.7952) —z(0.2048)1 + 0.0617 [z(0.6990) —z(0.3010)]
+ 0.0259 [z(0.5724) —z(0.4276)]

16 0.0717 [z(0.975) —z(0.025)] + 0.0414 [z(0.9565) —z(0.0435)] 0.9130
+ 0.0507 [z(0.9299) —z(0.0701)] + 0.0589 [z(0.8926) -z(0.1074)]
+ 0.0641 [z(0.8418) —z(0.1582)] + 0.0640 [z(0.7736) —z(0.2264)]
+ 0.0523 [z(0.6825) —z(0.3175)] + 0.0215 [z(0.5659) —2z(0.4341)]

18 0.0698 [z(0.975) —z(0.025)] + 0.0360 [z(0.9590) —=z(0.0410)] 0.9145
+ 0.0438 [z(0.9364) —z(0.0636)] + 0.0502 [z(0.9058) --z(0.0942)]
+ 0.0554 [z2(0.8659) —z(0.1341)] + 0.0579 [z(0.8127) —z(0.1873)]
+ 0.0543 [z(0.7449) —z(0.2551)] + 0.0414 [z(0.6593) —z(0.3407)]
+ 0.0161 [z2(0.5562) —z(0.4438)}

20 0.0687 [z(0.975) —z(0.025)]1 + 0.0327 [z(0.9604) —z(0.0396)1 0.9156

+ 0.0390 [z(0.9403) —z(0.0597)] +
+ 0.0483 [z(0.8808) —z(0.1192)] +
+ 0.0513 [z(0.7841) —2(0.2159)] +
+ 0.0323 [z(0.6374) —z(0.3626)]1 +

0.0440 [z(0.9141) —z(0.0859)]
0.0515 [z(0.8382) —z(0.1618)]
0.0455 [2(0.7174) —z(0.2826)]
0.0118 [z(0.5473) —z(0.4527)]
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Table 23. Estimators of the mean of a normal distribution when

az(ﬁ) + 3 4%(0) is minimized, for p:=0.025

Estimators (/[\l)

A
Efficiency (u)

10

12

14

16

18

20

0.0498 [z(0.025) + 2(0.975)] + 0.1340
+ 0.3162 [z(0.2977) + z(0.7023)]

0.0409 [2(0.025) + z(0.975)] + 0.0730
+ 0.1398 [z(0.1739) + 2(0.8261)] +

0.0363 [z(0.025) + z(0.975)] + 0.0482
+ 0.0815 [z(0.1228) + z(0.8772)] +
+ 0.2013 [z(0.3864) + z(0.6136)]

0.0335 [2(0.025) + z(0.975)] + 0.0353
+ 0.0551 [z(0.0963) + z(0.9037)] +
+ 0.1230 [2(0.2612) + =z(0.7388)] +

0.0315 [z(0.025) + 2(0.975)] + 0.0273
+ 0.0401 [2(0.0799) + z(0.9201)} +
+ 0.0810 [z(0.1944) + z(0.8056)] +
+ 0.1491 [z2(0.4198) 4+ z(0.5802)]

0.0299 [z(0.025) + z(0.975)]1 + 0.0214
+ 0.0301 [z(0.0679) + z(0.9321)] +
+ 0.0575 [z(0.1514) + 2z(0.8486)] +
+ 0.1065 [z(0.3079) + 2(0.6921)] +

0.0294 [2(0.025) + z(0.975)] + 0.0194
+ 0.0265 [z(0.0639) + z(0.9361)] +
+ 0.0459 [z(0.1343) + z(0.8657)] +
+ 0.0754 [z(0.2525) + z(0.7475)] +
+ 0.1135 [z(0.4411) + z(0.5589)]

{z(0.1054) + z(0.8946)]

[2(0.0751) + z(0.9249)]
0.2463 [2(0.3544) + z(0.6456)]

[2(0.0606) + z(0.9394)]
0.1327 [2(0.2241) + z(0.7759)]

[2(0.0524) + z(0.9476)]
0.0826 [z(0.1628) + z(0.8372)]
0.1705 {z(0.4068) + z{(0.5932)]

[2(0.0469) + z(0.9531)]
0.0573 [z2(0.1272) + z(0.8728)]
0.1137 [z(0.2886) + z(0.7114)]

{z(0.0426) + z(0.9574)]

0.0417 (2(0.1028) + z(0.8972)]
0.0785 [2(0.2175) + =z(0.7825)]
0.1344 [z(0.4284) + z(0.5716)]

[z(0.0415) + z(0.9585)]

0.0353 [2(0.0945) + z(0.9055)]
0.0594 [2(0.1859) + z(0.8141)]
0.0952 [2(0.3355) + z(0.6645)]

0.0284 [z(0.025) + z(0.975)1 + 0.0165 [z(0.0389) + z(0.9611)]

+ 0.0218 [z(0.0580) + z(0.9420)] +
+ 0.0376 [z(0.1154) + z(0.8846)] +
+ 0.0600 [z(0.2107) + z(0.7893)] +
+ 0.0870 [2(0.3564) + z(0.6436)] +

0.0286 [z(0.0824) + z(0.9176)]
0.0479 [2(0.1574) + z(0.8426)]
0.0734 [z(0.2767) + z(0.7233)]
0.0988 [z(0.4487) + z(0.5513)]

0.9353

0.9652

0.9768

0.9825

0.9858

0.9876

0.9894

0.9904
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Table 24. Estimators of the standard deviation of a normal distribution when

o) + 3 0%(3) is minimized, for p,=0.025
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K Estimators (;) Efficiency (3)

[ 0.1073 [z(0.975) —z(0.025)] + 0.1736 [z(0.8946) —2z(0.1054)] 0.8629
+ 0.1365 [z(0.7023) —z(0.2977)]

8 0.0921 [z(0.975) —z(0.025)] + 0.1122 [z(0.9249) —z(0.0751)] 0.8885
+ 0.1360 [z(0.8261) —z(0.1739] + 0.0814 [z(0.6456) —2z(0.3544)]

10 0.0835 [z(0.975) —z(0.025)] + 0.0823 [2(0.9394) —z(0.0606)] 0.9005
+ 0.1009 [z(0.8772) —=z(0.1228)] + 0.1043 [2(0.7759) —z(0.2241)]
+ 0.0541 [z(0.6136) —z(0.3864)]

12 0.0782 [z(0.975) —z(0.025)] + 0.0617 [z(0.9476) —z(0.0524)] 0.9069
+ 0.0770 [z(0.9037) —2(0.0963)] + 0.0865 [z(0.8372) —z(0.1628)]
+ 0.0816 [z(0.7388) —z(0.2612)] + 0.0388 [z(0.5932) —z(0.4068)]

14 0.0743 [z(0.975) —z(0.025)] + 0.0492 [z(0.9531) —2z(0.0469)] 0.9107
+ 0.0607 [z(0.9201) —z(0.0799)] + 0.0700 [z(0.8728) —~z(0.1272)]
+ 0.0742 [z(0.8056) —z(0.1944)] + 0.0660 [z(0.7114) —z(0.2886)]
+ 0.0297 [z(0.5802) —z(0.4198)]

16 0.0711 [z(0.975) —z(0.025)] + 0.0396 [z(0.9574) —2z(0.0426)] 0.9132
+ 0.0484 [z(0.9321) —z(0.0679)] + 0.0567 ([z(0.8972) —z(0.1028)]
+ 0.0634 [2(0.8486) —z(0.1514)] + 0.0651 [z(0.7825) —z(0.2175)]
+ 0.0557 [2(0.6921) —z(0.3079)] + 0.0241 [2(0.5716) —z(0.4284)]

18 0.0701 [z{0.975) —z(0.025)] + 0.0364 [z(0.9585) —z(0.0415)] 0.9146
+ 0.0435 [z(0.9361) —z(0.0639)] + 0.0500 [z(0.9055) —z(0.0945)]
+ 0.0546 [z(0.8657) —2z(0.1343)] + 0.056% [z(0.8141) —z(0.1859)]
+ 0.0537 [z(0.7475) —z(0.2525)] + 0.0423 [z(0.6645) —2z(0.3355)]
+ 0.0173 [z(0.5589) —z(0.4411)]

20 0.0681 [2(0.975) —z(0.025)] + 0.0313 [z(0.9611) —z(0.0389)] 0.9157

+ 0.0370 [2(0.9420) —2z(0.0580)] +
+ 0.0486 [2(0.8846) —z(0.1154)] +
+ 0.0518 [z(0.7893) —z(0.2107)] +
+ 0.0340 [z(0.6436) —z(0.3564)] +

0.0428 [z(0.9176) —z(0.0824)]
0.0517 [z(0.8426) —z(0.1574)]
0.0465 [z2(0.7233) —z(0.2767)]
0.0131 [z(0.5513) —z(0.4487)]
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Table 25. Efficiencies of the estimates of the mean and standard deviation of a
normal distribution from quantiles, with no restriction on p,

‘ Min. o* (%) Min. o* (5) Min. [0* () + o* (0)] Min. [o* (3) + 20* (3)] Min. [0 (3) + 30° (o))
A A ~

Eff () Eff (o) EFF (2) B (0) EFF () Eff (0) EFf (1) EFf (o)

6 0.9560 0.8943 0.9459 0.8541 0.9368 0.8649 0.9277 0.8714
8 0.9722 0.9294 0.9659 0.9050 0.9610 0.9107 0.9568 0.9139
10 0.9808 0.9496 0.9767 0.9328 0.9736 0.9369 0.9710 0.9389
12 0.9859 0.9622 0.9830 0.9501 0.9808 0.9531 0.9790 0.9545
14 0.9892 0.9706 0.9873 0.9609 0.9853 0.9439 0.9842 0.9649
16 0.9915 0.9764 0.9900 0.9688 0.9887 0.9711 0.9878 0.9719
18 0.9931 0.9807 0.9922 0.9739 0.9912 0.9760 0.9902 0.9772
20 0.9943 0.9839 0.9939 0.9767 0.9927 0.9801 0.9922 0.9807

Table 26. Efficiencies of the estimates of the mean and standard deviation of a
normal distribution from quantiles, for p;=0.01

. Min. o* (3) Min. o* (3) Min. [o® (2) + o ()] Min. [o® () + 26° ()] Min. [o* (3) + 30* ()]
o e ~ A o

Eff () Eff (o) EFf () Eff (0) Eff () EFf (0) EFF (x) Eff ()
6 0.9560 0.8943 0.9459 0.8541 0.9368 0.8649 0.9277 0.8714
8 0.9722 0.9260 0.9659 0.9050 0.9610 0.9107 0.9574 0.9134
10 0.9808 0.9408 0.9777 0.9294 0.9758 0.9319 0.9739 0.9332
12 0.9859 0.9488 0.9842 0.9417 0.9830 0.9432 0.9819 0.9440
14 0.9892 0.9536 0.9880 0.9489 0.9873 0.9498 0.9865 0.9504
16 0.9914 0.9567 0.9906 0.9532 0.9897 0.9541 0.9892 0.9545
18 0.9928 0.9588 0.9921 0.9564 0.9917 0.9569 0.9910 0.9573
20 0.9938 0.9603 0.9932 0.9585 0.9929 0.9589 0.9927 0.9590

40

— . — -

e o . o

e ———



N —

Table 27. Efficiencies of the estimates of the mean and standard deviation of a
normal distribution from quantiles, for p,=0.025
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Min.* () | Min o' @ Min. [* (3) + o* (0] Min. [0* (5) + 20° (@] Min. [o* (5) + 30* (0)]
K EFf (1) EF (0) Eff (1) EFF (0) EfF (1) EFF () Eff (1) Eff ()
6 0.9560 0.8777 0.9470 0.8524 0.9414 0.8585 0.9353 0.8629
8 0.9722 0.8965 0.9698 0.8843 0.9675 0.8869 0.9652 0.8885
10 0.9806 0.9051 0.9793 0.8982 0.9781 0.8997 0.9768 0.9005
12 0.9851 0.9098 0.9841 0.9055 0.9833 0.9065 0.9825 0.9069
14 0.9876 0.9126 0.9869 0.9098 0.9863 0.9104 0.9858 0.9107
16 0.9892 0.9144 0.9886 0.9125 0.9880 0.9130 0.9876 0.9132
18 0.9902 0.9156 0.9808 0.9143 0.9895 0.9145 0.9894 0.9146
20 0.9910 0.9164 0.9906 0.9155 0.9905 0.9156 0.9904 0.9157
Table 28. Rejection criteria for a normally distributed hypothesized population
¢ = 0.05 e =001
n %y %y: K K, K K
200 0.1859 0.2252 0.416 —0.360 0.552 -~0.220
250 0.1663 0.2014 0.372 —0.406 0.467 -0.281
300 0.1518 0.1839 0.339 —0.440 0.427 -0.326
400 0.1315 0.1592 0.294 —0.489 0.370 —~0.390
500 0.1177 0.1424 0.263 —0.522 0.331 —0.433
600 0.1074 0.1300 0.240 —0.546 0.302 —0.465
700 0.0994 0.1204 0.222 —0.565 0.279 —0.490
800 0.0930 0.1126 0.208 —0.580 0.261 —0.510
900 0.0877 0.1062 0.196 —0.592 0.246 —-0.527
1000 0.0832 0.1007 0.186 ~0.603 0.234 -0.541

a1
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